
ETL Implementation Guide
12.5

2ETL Implementation Guide12.5

Copyright © Raynet GmbH (Germany, Paderborn HRB 3524). All rights reserved.
Complete or partial reproduction, adaptation, or translation without prior written permission
is prohibited.

ETL Implementation Guide

Raynet and RayFlow are trademarks or registered trademarks of Raynet GmbH protected by
patents in European Union, USA and Australia, other patents pending. Other company names and
product names are trademarks of their respective owners and are used to their credit.

The content of this document is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Raynet GmbH. Raynet GmbH assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document. All names
and data used in examples are fictitious unless otherwise noted.

Any type of software or data file can be packaged for software management using packaging tools
from Raynet or those publicly purchasable in the market. The resulting package is referred to as a
Raynet package. Copyright for any third party software and/or data described in a Raynet package
remains the property of the relevant software vendor and/or developer. Raynet GmbH does not
accept any liability arising from the distribution and/or use of third party software and/or data
described in Raynet packages. Please refer to your Raynet license agreement for complete
warranty and liability information.

Raynet GmbH Germany
See our website for locations.

www.raynet.de

http://www.raynet.de

3ETL Implementation Guide12.5

Contents
... 5Introduction

... 6Basic concepts

... 7Technical implementation

... 9ETL and Data Hub

... 10Tutorial and implementation guide

... 10Prerequisites

... 10Starting the examples

... 12Debug and troubleshoot

... 14JSON format

... 17Mapping and selecting

... 19Single column

... 21Multiple columns

.. 24Defining aggregations

... 25Fixed value

... 27Auto value

... 29Transformed value

... 31Regular expression match

... 33Switch-case statement

... 35Custom SQL statement

... 37Advanced topics

.. 37Fallback columns

.. 39Union mapping

.. 41Arbitrary column types

.. 42Inferring remaining columns

... 43Filtering

... 45Logical operators

... 46Comparison and other operators

... 47Custom filtering

... 48Grouping and deduplicating

... 54Joining

... 55Cell merging

... 58Overriding cell merging strategy

... 62Order of joining

... 62Tables priority

... 66Wildcard joining

... 67Column selection

4ETL Implementation Guide12.5

... 67Advanced deduplicating

... 69Using MaxValue and MinValue strategy

... 69Splitting

... 71Enriching

... 74Look-up values

... 74Split look-up

... 76Look-up keys

... 77Fallback

... 77Consolidating look-up targets

... 78Chaining steps

... 80Optional and required tables

... 81Programmability

... 81SQL environment

.. 81Creating reusable scripts

.. 82Extra functions

... 84Additional Information

5ETL Implementation Guide12.5

Introduction
With the new ETL technology, Raynet is on the way to bring the groundbreaking vision of a fully
automated, UI-supported and use case-tailored data transformation to life. With the current
version, it is possible to implement the transformation process in a configurable way, even
without programming knowledge. At the same time, the ETL process is documented in a
structured and comprehensible way.

6ETL Implementation Guide12.5

Basic concepts
In order to transform the data (Transform), we need to plug-in some initial raw or partially
transformed data (Extract), and the after processing load it back to the data source (Load).

Transformation step should be understood as a process of one or more steps, which may be
interconnected, with many inputs and many outputs. The following steps are currently available:

Map
Transforms one table to another table. Mapping can take existing columns as-is, rename them,
perform simple or complex transforming, aggregating or disaggregating them etc. The result
table has always as many rows as the input table, but the number of columns may be different.

Filter
Takes the input table and filter out items that do not match a specific set of conditions. The
result table has always the same number of columns, but may have a different number of rows,
depending on the filtering.

Join
Joins two or more tables together by combining columns with the same names, using specific
methods of aggregation. The input are two or more tables, and the output is a single table.

Deduplicate
Based on unique value of one or more columns, this steps deduplicates the table based on the
conditions defined by the user.

Enrich
Adds information to a specific column of a source table by performing a look-up in another
table(s) using set of ordered look-up rules. The input is a single table + a set of look-up tables,
the output is a single table with all the columns from the source table + the enriched column if
it was not present in the original table.

These steps can be used to perform complex operations by splitting big unit of works into
smaller bits, that are building blocks for the complex transformation.

7ETL Implementation Guide12.5

This sample advanced process may have the following workflow:

Transformation process is a chunk of steps which perform a given task (for example: take Active
Directory, RayVentory and Vmware source raw data and produce a single table combining the
sources together). Obviously, there may be more independent ETL processes defined for a single
data set.

As pictured above, a single step (for example a single mapping or joining) can have different
number of sources, and itself it may be a source for one or more steps.

The results of each step is by default temporary that means it will not be written to the target
database. To mark a step as “result”, the user must do it explicitly. In the chart above, all “green”
steps are written to the target database, but the gray ones (#011 and #003) are not and exist only
as intermediary steps for other steps.

An output of a step if always a single table, which can be temporary or permanent (written back
to the database). However, it is important not to confuse the step with the table. Each step is an
operation on the data, which has inputs and output, and the output of the step is a table.

Technical implementation

ETL library by Raynet has the following principles:

8ETL Implementation Guide12.5

Cross-platform (works on Windows, UNIX, Docker etc.)

Independent from data source (currently supports MS SQL, but is platform-agnostic in
its core. Future implementations will include SQlite, MariaDB, OracleDB, REST etc.)

Secure (all operations happen in a sandbox)

Transparent (instead of large, complex operations, the work is split to smaller units of
work)

Efficient (works with data sets having several terabytes of sizes)

Portable (has no dependencies to any DB and other frameworks, except of the data that
is extracted from source and loaded to the target)

Configurable (all operations are defined in JSON format, no direct SQL involved)

Flexible and easy to change (complex operations are abstracted, so that typical tasks
can be achieved with a single change, without writing complex join or other queries).

To achieve this, the following is involved:

The user defines his transformation processes in a JSON file with a specified syntax.
This JSON file can be crafted by hand or by using some visual editing tools that Raynet
provides in the future (see section tooling).

The transformation layer performs extraction by reading out the necessary tables that
the user required. It then copies these tables from the data source (with help of
specific data adapter) to a sandbox environment, utilizing embedded temporary
SQLite database.

The transformation is performed in the SQLLite database and has no access to the
original data source. All steps can see only the tables that were referenced by the user.

Once the transformation is done, the tables from the sandbox are copied back to the
target environment, again using specific data adapter.

The operations executed in each step may be executed either directly in the sandbox (native
SQLLite query) or in memory. The engine tries to rely as much as possible to the sandbox
database engine, which is usually the fastest way of transforming, filtering etc. Using certain
features provided by the engine may transparently switch to in-memory execution, which may
involve small performance hit.

9ETL Implementation Guide12.5

At the end, data validation should happen on the RayVentory Data Hub site, to ensure that the
tables are correct from the business point of view (all columns, required names, non-null fields
etc.). This does not belong to the scope of ETL library from Raynet.

The operation that happen in the sandbox may be parallelized. By default, the library tries to
create a graph of dependencies and execute tasks in batches, if all dependencies are fulfilled. In
the example above, first four tasks D evicesAD _ Norm a lized, D evicesVm w a re_ Norm a lized,
D evicesRa yVentory_ Norm a lized and D evicesSCCM _ Norm a lized have only dependencies to the
source DB (and no other steps), so they may be executed in parallel. On the other hand, there are
some other steps that depend on these four, so the other steps will wait until all four are
executed.

ETL and Data Hub

Data Hub adds an extra layer on top of ETL library when used together. The hub takes over the
responsibility of data extraction, and does it from much more sources than ETL library can (for
example cloud connectors, Active Directory, PowerShell etc.).

The Extraction part in the ETL library works then directly on the already extracted data. It ensures,
that the transformation and all required operations are executed in a clean sandbox.

Extract -> should be understood as reading the values from the RayVentory Data Hub
Results table – data already collected by any Data Agent

Load -> should be understood as writing back normalized result(s) to the RayVentory Data
Hub Results table.

Extraction and loading can be implemented in the hosted instance (task type transformation) or
on agent site.

10ETL Implementation Guide12.5

Tutorial and implementation guide

Prerequisites

To edit the JSON, it is assumed that the reader has a knowledge of JSON notation. Use
some decent JSON editor to help you editing the files to avoid typos and other
mistakes

It is not required but still highly recommended to have basic knowledge of SQL (any
flavour) to understand some important concepts

Starting the examples

For a quick start with the console, an MS SQL database with some source tables is required. The
samples below show how to hand-write the JSON definition. After saving the file in JSON format,
you can run it using the console:
Raynet.Etl.Console.exe -f "<path-to-json>" -c "<connection-string-to-mssql-database>"

For example:
Raynet.Etl.Console.exe -f "c:\temp\def.json" -c "Server=.

\SQLEXPRESS;Database=RayVentoryDataHubResult;Trusted_Connection=True;"

The console application outputs information about the performed job, for example:

11ETL Implementation Guide12.5

Partial samples and multiple files

Note:
These options are available in ETL module version 1.1.271 and newer.

It is possible to split the definition across many JSON files, which are then joined by the ETL
runtime. Partial definitions may reference steps from other files, and they will be correctly
resolved and processed in parallel by the engine.

To use partial JSON definition you can provide multiple arguments to the -f switch, for example:
Raynet.Etl.Console.exe -f "c:\temp\def-1.json" "c:\temp\def-2.json" -c "Server=.

\SQLEXPRESS;Database=RayVentoryDataHubResult;Trusted_Connection=True;"

Alternatively, if all JSON files lie in the same folder and have .json file extension, then instead of
the path to the file, the full path to the directory may be provided instead:
Raynet.Etl.Console.exe -f "c:\temp\" -c "Server=.

\SQLEXPRESS;Database=RayVentoryDataHubResult;Trusted_Connection=True;"

These options can be joined, for example a folder and specific files.

Beware the following limitations:

You must ensure the files can be merged by having unique step IDs across all files.

12ETL Implementation Guide12.5

ETL engine does not de-duplicate your resources - if a file is referenced twice (whether by file
path or a folder path) it will be merged twice.

If using more than one input file, there is no automatic SQL and PY file detection. In case of a
single file, they are resolved automatically by taking the file name with a proper extension. In
multi-file scenario, you should specify the value of command line parameter to control which
script and macro definition gets loaded.

Debug and troubleshoot

There are some different techniques for debugging and troubleshooting ETL.

Verbose output

By default, only some basic information and success/failure messages are logged in the console
window. To activate a more verbose output, add --verbose true switch to your command line.
Verbose mode is activated automatically if any of --debug or --break command line switch is
used.

In verbose mode, the following features are activated

More verbose messages
More info is logged in the console. Additional information include: duration of operations, files
being used (database file, SQL scripts)

Data
First three rows of each table output are printed into the console, so that the user can control
the execution state.

Colum types
Column types for tables written back to the DB (load phase) are written into the console
output.

Debug mode

Debug mode disabled some optimizations. To use it, add --debug true to your command line.
Debug mode automatically activated verbose output. The following features are activated in the
debug mode:

Disabled flow optimizations
Without the debug mode, ETL tries to organize the steps in batches and executes up to 10
steps in parallel, ensuring that the dependencies are fulfilled. In the debug mode, the steps
are ordered to fulfill the dependencies and requirements, but are always started sequentially.
This means that the execution takes more time, but gives the user a way to control the
execution and state after each step.

Limited parallelization
Some operations are executed sequentially and not in parallel.

13ETL Implementation Guide12.5

All features introduced by verbose mode.

Breakpoints

Breakpoints are meant to pause the execution after each step. The execution is only continued
once the user presses any key. Breakpoints automatically enable verbose output and debug
mode. To activate the breakpoints, add --break true to your command line. The following
features are activated in the breakpoint mode:

Breakpoints
After each step, a breakpoint is triggered. The execution continues to the next step only after
pressing any key. Again, this gives the user some time to check the current step of the
database and the transformed data.

All features introduced by debug and verbose mode.

Dry mode

Dry mode enables you to see which tables are required and produced by a given JSON file,
without actually doing the transformation. This process is fast as only minimal set of metadata
gets pulled from the database. To activate dry mode, add --dryMode true to the command line. If
the switch is present, you can also use another parameter --stepIds which may contain space-
separated list of step identifiers to be analyzed. If no step ID is provided, then all steps from the
selected JSON file will be analyzed.

Sample output

Sample output from the console when all three switches are used:

14ETL Implementation Guide12.5

Example of dry mode:

JSON format

The tasks and their relations are described using a JSON format. The ETL CLI expects the user to
provide a full path to a JSON file for further processing.

This user guide assumes that the user has already an experience with JSON format. Below is a
quick recap of the syntax:

15ETL Implementation Guide12.5

Basic data types

Number: An integer or floating-point number. The numbers are written directly without any
enclosing quotes, for example 100 or 10.23.

String: Represents an Unicode text. Strings must be enclosed with opening and closing
quotation-marks or a pair of apostrophes. To use a quotation inside a string, it must be
preceded by so-called "escape character" - a backslash (\). Valid example of strings are:
"" (empty string), "Hello World", "Hello \"World\" I have nested quotes". Note: Instead of
quotation, a single apostrophe can be used - in this case quotation marks do not need to be
escaped (on the other hand the apostrophes should). Examples using single apostrophe are:
'' (empty string), 'Hello World', 'Hello "World" I have nested quotes', 'Hello I am John\'s
computer'.

Boolean: Either true or false (without quotation or apostrophes).

Array: An ordered list of objects of other types (numbers, strings, boolean values, objects or
other arrays). Array elements are separated by a comma, and surrounded with a pair of
opening and closing square brackets. Valid examples of an array are: [] (empty array), ["single
string"], [1, 2, 3], [true, 1, "string] etc.

Object: A collection of name–value pairs where the names are strings. Objects are delimited
with curly brackets and use commas to separate each pair, while within each pair the colon ':'
character separates the key or name from its value. Examples of valid objects are: { } (empty
object), { "name": "Marcin" }, { "Name": John", "Surname": "Smith", "Age": 30 } etc.

null: an empty value, using the word null.

Object values and array elements can be of any type, including other objects, arrays or null
values.

ETL definition format

In its simple form, the definition of a transformation is a JSON object, which defines an array of
steps ("steps"):

{
 "steps": [
 {
 // step 1 here
 },
 {
 // step 2 here
 }
 // and so on...
]
}

16ETL Implementation Guide12.5

JSON does not define the source connection or a database type. Instead, this information is
provided via the command-line (when executed as a standalone tool), or passed by DataHub
(when executed as a transformation task).

The array of steps can contain one or more steps, available from the list of supported operations

Mapping and selecting
Transforms one table into another (the number of rows stays the same) or concatenates two or
more tables into a single table.

Similarities to SQL:
For a single table usage this translates roughly to SELECT <columns> FROM <source>
For multiple tables usage, this translates roughly to SELECT <all-columns> FROM <source1>

UNION ALL SELECT <all-columns> FROM <source2>...

Filtering
Takes an input table and produced another one with the same columns, but having less or
equal number of rows (based on filtering condition).

Similarities to SQL:
This method translates roughly to SELECT * FROM <source> WHERE <condition>

Grouping and deduplicating
Take a table and group the rows based on a matching combination of a single or more
columns. Grouping has two modes: it can either only mark the rows which should be grouped
by introducing an extra column, or perform de-duplication. De-duplication always takes a
single row from each group. Some typical aggregation modes are provided (maximum,
minimum, average, concatenation and coalescing).

Similarities to SQL:
Grouping itself is similar to SELECT * FROM <source> GROUP BY <group_key>. Introducing an
extra column with group ID has no direct equivalent.

Joining
Given a list of several tables, this operation joins them together and automatically resolves
conflicting columns using aggregation methods. It provides a way for defining a "master
joining order" and override this on column-basis, ensuring that different table may have
different priorities in different columns.

Similarities to SQL:
Less complex scenarios can be represented by a sequence of JOIN (LEFT, INNER, OUTER)
queries, more complex have no simple mapping. Additionally, it is possible to join on
wildcards (for example all tables matching the pattern MyTable*) and also define priorities
based on wildcard patterns. Neither of these is possible with simple SQL.

Advanced deduplicating
Given some input table, deduplicates it based on several conditions and produces a table
without duplicates. The duplicates can be either picked from existing rows or created based
on all grouped values. It is also possible to select any number of rows (for example only first,
none, all or all but not last etc.)

Similarities to SQL:

17ETL Implementation Guide12.5

There is nothing which maps 1-1 to this, the de-duplication is represented by several
operations involving the usage of GROUP BY and aggregations.

Note: This function is powerful but for most cases may be a bit of overkill. A similar
functionality is offered by the Groupping, which should be the first choice for de-duplication
or grouping.

Splitting
Given a single input table having a column with aggregated values separated by a specific
separator, this produces a table which "unpivots" the data.

Similarities to SQL:
There is nothing which maps 1-1, the operation is represented by several functions and select
queries.

Enriching
Given a single input table, add extra information to it from other tables, using different
methods of joining by different keys.

Similarities to SQL:
There is nothing which maps 1-1 to this, enrichment is represented by many different join
operations, grouping, sub-queries etc.

The steps can be chained.

Comments

Both single line comments (starting with //) and block comments (starting with /* and ending
with */) are supported in the JSON file.

Mapping and selecting

Mapping is a process which covers one of the following use cases:

Having a single input table, an output table is created. The new table has the exact number of
rows as the first table, but the columns may be different.

Having several input tables, a single output table is created. The new table has the exact
number of rows as all selected tables together, and contains all unique columns from the
selected tables. This means that the mapping process can concatenate tables, ensuring that all
columns are taken over.

Mapping step requires that the user defines the list of columns to be written in the new table.
There are three ways to do it:

By specifying all required columns

18ETL Implementation Guide12.5

By skipping the specification of required columns but setting the attribute m a pRem a ing to
true.

By using both together - specifying only columns which will be transformed, and using
m a pRem a ining to infer the remaining, undefined columns and include them as well.

For more information about map inferring remaining columns to map, read the following
chapter: Inferring remaining columns.

A column may be taken-over or transformed. The following mappings are available:

o Simple mapping
A column may be simply taken over without any additional processing (simple mapping).
The name may be taken as-is or changed to an arbitrary name.

o Fixed values
A new column may be created, containing fixed values.

o Auto values
A new column may be created, containing values inserted dynamically (random numbers,
date and time, GUIDs, placeholders).

o Transformed values
A new column may be created by transforming the existing column using a set of transform
options (uppercasing, lowercasing, switch-case statements etc.)

o Aggregated values
A new column may be created by aggregating two or more other columns (max/min value,
average, concatenated string, first not-null value etc.)

o Custom values
A custom value may be calculated using SQL syntax.

Mapping uses the following syntax:

 {
 "id": 1, // unique ID
 "type": "map",
 "name": "Description of the step",
 "source": "Name of the source table",
 "columns": {
 // a dictionary of columns
 "TargetName1": {}, // definition of source1
 "TargetName2": {}, // definition of source2
 [...]
 },
 "target": "The name of the output table"
 }

At minimum the following properties are required:

19ETL Implementation Guide12.5

ID (must be unique)

Type (must be set to "map")

Source (must be one of the following):

o A string representing the table name.

o A string representing a wildcard to look for table(s).

o An integer representing the source as another step.

o An object with property table set to the name of the source table.

o An object with property step set to the ID of the source step.

o An array of tables or steps to perform union select.

Either a non-empty list of columns, or the attribute m a pRem a ining set to true.

Note:

Note: The target is optional. If omitted, the output table is saved temporarily and -
unless not used by any other step - will be discarded once the transformation is
finished.

Source is by default optional, meaning that the table does not have to be existing. If the table is
missing, the step will not be executed and its target table will not be written. There is a way to
define that the source is required, in which case in case of a missing source table the step will fail
and report an error. More information about setting up required steps can be found in the
following chapter: Optional and required tables.

Value types

The value type for each column is inferred from the context. To enforce an arbitrary column type
(for example VARCHAR(128)) use the property type. More information about arbitrary types can be
found in chapter Arbitrary column types

Single column

Simple mapping takes a source column and produces another column with a given target name.

The full syntax for the simple mapping is

 "target-column-name": {
 "column": "required-source-column-name"
 }

or

 "target-column-name": {
 "column": "source-column-name",
 "type": "sql-type"

20ETL Implementation Guide12.5

 }

If type is omitted, the type of the column is inferred from the usage (either from parent table, or
from the actual value type like string, number etc.).

You should specify the type if:

The column in the target table should have a specific type or length - for example
varchar(100) and not varchar(max)

The column in the source table should be cast to another type - for example to treat integer as
string etc.

However, if the source type is sufficient, it is possible to use a shorter syntax for the column
mapping:

 "target-column-name": "source-column-name"

The names of target columns must be unique. The names of source columns do not have to be
unique.

The columns that you do not define will not be written in the target table, unless you instruct the
ETL engine to do otherwise by setting the value of m a pRem a ining to true.

Example

Given the following table SourceTable:

Name Surname Age

Marcin Otorowski 34

John Smith 51

Kate Binks 25

And the following JSON step definition:

 {
 "id": 1,
 "type": "map",
 "name": "Example of simple columns",
 "source": "SourceTable",
 "columns": {
 "FirstName": "Name",
 "LastName": "Surname",
 "Age": "Age",
 },
 "target": "TargetTable_SimpleColumns"
 }

21ETL Implementation Guide12.5

The following result table TargetTable_SimpleColumns is expected:

FirstName LastName Age

John Smith 30

Marcin Otorowski 34

Kate Binks 25

Arbitrary types, casting and converting

Using the type property lets you define a custom cast or custom type length. This common
property is available for all column types, see more information in chapter Arbitrary column
types.

Fallback values

It is possible to define a custom value returned, if the source column does not exist in the table.
For more information about the usage of fallback values, see the Fallback columns chapter.

Multiple columns

It is possible to calculate the value of a column based on the two or more other columns.

The full syntax for the multiple column mapping is

 "target-column-name": {
 "columns": ["required-source-column-name-1", "required-source-column-name-
2"...],
 "aggregation": string|object
 }

or

 "target-column-name": {
 "columns": ["required-source-column-name-1", "required-source-column-name-
2"...],
 "aggregation": string|object
 "type": "sql-type"
 }

When the property aggregation is omitted, the default concatenation with pipe (|) as a a
separator will be used.

22ETL Implementation Guide12.5

Aggregation may be defined either as a string or as an object. For more information about the
syntax and supported aggregation methods, see chapter Defining aggregations.

Note:

Multiple column mapping support basic aggregations, like coalescing, selecting
average/minimum/maximum values or concatenating the strings. You can use more
complex values and cover more complicated cases by using custom mapping via SQL.

In this example, value from colum n2, colum n3 and colum n4 will be concatenated using | as the
separator. This is the default behavior should no other options be specified. You can instruct ETL
layer to use specific algorithm by using object notation:
{

 "steps": [

 {

 "id": 2,

 "name": "Normalize sample",

 "type": "map",

 "source": "sample2",

 "target": "sample2_Normalized",

 "columns": {

 "column1": "column1",

 "column2_together":{

 "columns": ["column2", "column3", "column4"],

 "aggregation": "coalesce"

 }

 }

 }

]

}

This definition will select first non-null value from the list, starting from the left to right. To
concatenate strings, replace coa lesce with conca t. If you need a custom separator, use again an
object notation for aggregation and specify it there.

Note:

Bear in mind that null values are omitted from the result of CONCAT. This is a handy
feature for table join, where you want to track the source table. Join aggregation rules
are the same as column rules for mapping.

Example

Given the following table SourceV alues:

col1 col2 col3 col4

Row1 1 < null> < null>

Row2 2 2 < null>

23ETL Implementation Guide12.5

col1 col2 col3 col4

Row3 3 3 4

Row4 < null> 4 5

Row5 < null> < null> 6

Row6 4 < null> 7

And the following JSON step definition:

 {
 "id": 2,
 "name": "Example of column aggregation",
 "type": "map",
 "source": "SourceValues",
 "target": "SourceValues_Aggregated",
 "columns": {
 "col1": "col1",
 "coalesce": {
 "columns": ["col2", "col3", "col4"],
 "aggregation": "coalesce"
 },
 "max": {
 "columns": ["col2", "col3", "col4"],
 "aggregation": "max"
 },
 "concat_default": {
 "columns": ["col2", "col3", "col4"]
 },
 "concat_custom": {
 "columns": ["col2", "col4", "col3"],
 "aggregation": {
 "type": "concat",
 "separator": ","
 }
 }
 }
 }

The following result table SourceV alues_Aggregated is expected:

col1 coalesce max concat_default concat_custom

Row1 1 1 1 1

Row2 2 2 2 | 2 2,2

Row3 3 4 3 | 3 | 4 3,4,3

24ETL Implementation Guide12.5

col1 coalesce max concat_default concat_custom

Row4 4 5 4 | 5 5,4

Row5 6 6 6 6

Row6 4 7 4 | 7 4,7

Arbitrary types, casting and converting

Using the type property lets you define a custom cast or custom type length. This common
property is available for all column types, see more information in chapter Arbitrary column
types.

Defining aggregations

Aggregations are methods, that - given a sequence of multiple input columns - produce a single
value.

In current implementations, aggregations are used:

by multiple column mappings to define how the values from two or more columns are to be
transformed into a single column

by join mapping, where aggregation defines the way of solving conflicts between similar
columns in two or more tables.

The library supports the following aggregation methods:

Avg
Selects the average value of one or more values

Max
Select the maximum of one or more values

Min
Select the minimum of one or more values

Sum
Select the sum of one or more values

Coalesce (alias FirstNonNull)
Select first not-empty value from the list of one or more values (from left to right)

Concat
Join all given non-empty values using a specific separator (from left to right). For this
operation, a separator may be defined (default is a pipe character |).
Bear in mind that this operation omits NULL values.

25ETL Implementation Guide12.5

In places where the aggregation is expected, a simple string (one of the values from the table
above) is sufficient to define the aggregation, the values are case insensitive. For example, this is
how column mapping defines that the maximum of three values should be taken:

 "target-column-name": {
 "columns": ["column1", "column2", "column3"],
 "aggregation": "max"
 }

The string syntax is a shorthand form of the full object notation, which would have the following
syntax:

 "target-column-name": {
 "columns": ["column1", "column2", "column3"],
 "aggregation": {
 "type": "max"
 }
 }

Both forms are functionally equal. You can use either of these for all operations. However, to use
the Concat method with a custom separator, the object notation must be used. The separator is
defined by the separator property:

 "target-column-name": {
 "columns": ["column1", "column2", "column3"],
 "aggregation": {
 "type": "concat",
 "separator": ";"
 }
 }

Fixed value

You can use a fixed value for a column (for example a string, number or boolean).

To do this, use the following syntax:
{

 "columns": {

 "target_column_name":

 {

 "value": "some value"

 },

 [...]

 }

}

Note:

Avoid mistakes of mixing this syntax with a similar looking "target_column_name":
"source_column_name". The former will use a fixed value "source_column_name", the
latter will try to look-up the column named "source_column_name".

26ETL Implementation Guide12.5

Example

Given the following table SourceTable:

Name Surname Age

Marcin Otorowski 34

John Smith 51

Kate Binks 25

And the following JSON step definition:

 {
 "id": 1,
 "type": "map",
 "name": "Example of fixed-columns",
 "source": "SourceTable",
 "columns": {
 "Name": "Name",
 "Fixed_String": { "value": "MyValue" },
 "Fixed_Number": { "value": 23 },
 "Fixed_Boolean": { "value": true }
 },
 "target": "TargetTable_FixedColumns"
 }

The following result table TargetTable_FixedColumns is expected:

Name Fixed_String Fixed_Number Fixed_Boolean

Marcin MyValue 23 1 (bit)

John MyValue 23 1 (bit)

Kate MyValue 23 1 (bit)

Arbitrary types, casting and converting

Using the type property lets you define a custom cast or custom type length. This common
property is available for all column types, see more information in chapter Arbitrary column
types.

27ETL Implementation Guide12.5

Auto value

You can use an automatically generated, non-static value for a column. Currently there are 4
types of auto-columns supported:

Guid
Random UUID (globally unique)

Number
Autoincremented number (locally unique)

DateTime
Date and time (not guaranteed to be unique, neither globally nor locally)

Date
Current date (without time part)

Time
Current time

TableName
The name of the source table (not unique). This type of auto-column makes sense in case when
two or more tables are selected by a single map statement, and the information about the
source table name is important.

To define auto-column, an object notation in the following format is required:
{

 "columns": {

 "target_column_name":

 {

 "auto": "<type>"

 },

 [...]

 }

}

Where <type> is one of the supported value: Guid, Number, DateTime or TableName. There are no
more properties required or defined by auto-columns.

Example

Given the following table SourceTable:

Name Surname Age

Marcin Otorowski 34

John Smith 51

28ETL Implementation Guide12.5

Name Surname Age

Kate Binks 25

And the following JSON step definition:

 {
 "id": 1,
 "type": "map",
 "name": "Example of auto-columns",
 "source": "SourceTable",
 "columns": {
 "Name": "Name",
 "Auto_DateTime": { "auto": "datetime" },
 "Auto_Guid": { "auto": "guid" },
 "Auto_Number": { "auto": "number" },
 "Auto_TableName": { "auto": "tableName" }
 },
 "target": "TargetTable_AutoColumns"
 }

The following result table TargetTable_AutoColumns is expected:

Name Auto_DateTime Auto_Guid Auto_Number Auto_TableNam
e

Marcin
2021-03-17
11:54:40.000

57992940-6633-
4528-9B3A-
47563855EE14

1 SourceTable

John
2021-03-17
11:54:40.000

FDE0EA32-E252-
408F-8743-
52A53BD2F141

2 SourceTable

Kate
2021-03-17
11:54:40.000

0E266619-6689-
4A2C-B94F-
934E6B095E50

3 SourceTable

Arbitrary types, casting and converting

Using the type property lets you define a custom cast or custom type length. This common
property is available for all column types, see more information in chapter Arbitrary column
types.

29ETL Implementation Guide12.5

Transformed value

The value can be transformed using a built-in transform. The following transformation are
available:

Transform name Behavior

Lowercase Returns lowercase variant of the value. This transformation by default
preserves the original data type.

Uppercase Returns uppercase variant of the value. This transformation by default
preserves the original data type.

IsNullOrEmpty Returns 0 is the value is not null or empty or 1 otherwise. This
transformation maps by default to a boolean value.

IsNotNullOrEmp
ty

Returns 1 is the value is not null or empty or 0 otherwise. This
transformation maps by default to a boolean value.

Length Returns the length of the string value. This transformation maps by default
to a 32-bit integer value.

MD5 Hashes the given column with MD5 hash. Returns 128-bit (16 bytes)
hexadecimal string of 32 characters.

Note: This transformation is available in ETL module version 1.1.271 and
newer.

SHA1 Hashes the given column with SHA1 hash. Returns 160-bit (20 bytes)
hexadecimal string of 40 characters.

Note: This transformation is available in ETL module version 1.1.271 and
newer.

There are three ways of defining transformation:

Simple definition:
{

 "columns":

 {

 "target_column_name": "source_column_name-><type>"

 }

}

Object definition:
{

 "columns":

 {

 "target_column_name":

 {

 "name": "source_column_name",

 "transform": "<type>"

 }

 }

}

30ETL Implementation Guide12.5

Full object definition
{

 "columns":

 {

 "target_column_name":

 {

 "name": "source_column_name",

 "transform":

 {

 "type": "<type>"

 }

 }

 }

}

Where <type> is one of the supported value: Lowercase, Uppercase, IsNullOrEmpty,
IsNotNullOrEmpty or Length. Transformation names are case-insensitive. All three ways of
defining a transformation are functionally and technically equal. We recommend using the
simplified string notation, as it is the least verbose of all three.

Example

Given the following table SourceTable:

Name Surname Age

Marcin Otorowski 34

John < null> 51

Kate Binks 25

And the following JSON step definition:

 {
 "id": 1,
 "type": "map",
 "name": "Example of transform-columns",
 "source": "SourceTable",
 "columns": {
 "Name": "Name",
 "Name_Uppercase": "Name->uppercase",
 "Surname_IsProvided": "Surname->isnotnullorempty",
 "Surname_Length": "Surname->length"
 },
 "target": "TargetTable_TransformedColumns"
 }

31ETL Implementation Guide12.5

The following result table TargetTable_TransformedColumns is expected:

Name Name_Uppercase Surname_IsProvided Surname_Length

Marcin MARCIN 1 (bit) 9

John JOHN 0 (bit) 0

Kate KATE 1 (bit) 5

Arbitrary types, casting and converting

Using the type property lets you define a custom cast or custom type length. This common
property is available for all column types, see more information in chapter Arbitrary column
types.

Fallback values

It is possible to define a custom value returned, if the source column does not exist in the table.
For more information about the usage of fallback values, see the Fallback columns chapter.

Regular expression match

Note:
This column mapping type is available in ETL module version 1.1.271 and newer.

The value can be checked against a Regular Expression mask. This mapping returns 1 (true) if the
given column matches the expression, or 0 (false) if it does not match the expression.

To define a Regular Expression match, an object notation in the following format is required:
{

 "columns": {

 "target_column_name":

 {

 "column": "<name-of-source-column>",

 "regex": "<regular-expression>"

 },

 [...]

 }

}

Where <regex> is a valid Regular Expression pattern. There are no more properties required or
defined by regex-columns.

32ETL Implementation Guide12.5

Note:
More information about Regular Expressions and valid patterns can be found in
internet. The following website is a great resource for both basic and advanced
concepts:
https://www.regular-expressions.info/

Special characters and escaping sequences in Regular Expression patterns

Regular expressions use \ (backslash) as an escape sequence. Bear in mind the same escape
sequence is used by JSON schema. This means, that when escaping a regular expression inside a
JSON file, it is necessary to perform "double-escaping".

For example, to test whether the name consists of letters, followed by a dot, followed by
numbers, the following Regular Expression can be used:
^[a-zA-Z]+\.[0-9]+$

Explanation:

^ means this is the beginning of the string

$ means the string ends here

[a-zA-Z]+ - one or more instances of characters from range a-z or A-Z.

[0-9]+ - one or more digit

\. - literal dot. Dot has a special meaning in Regular Expressions (any character), and to use it
literally it must be escaped with \ (backslash).

However, the backslash in the regular expression must be escaped once more when used in
JSON file, so that it is not interpreted as escape JSON sequence. The following JSON would be
valid:

"regex": "^[a-zA-Z]+\\.[0-9]+$"

Example

Given the following table SourceTable:

Name Mail

Marcin marcin@raynet.de

John john@raynet.ch

https://www.regular-expressions.info/

33ETL Implementation Guide12.5

Name Mail

Kate kate@contoso.com

And the following JSON step definition:

 {
 "id": 1,
 "type": "map",
 "name": "Example of auto-columns",
 "source": "SourceTable",
 "columns": {
 "Name": "Name",
 "WorksInRaynet": {
 "column": "Mail",
 "regex": "@raynet\\.(de|ch|com)$" // this will check if the Mail column ends
with @raynet.de, or @raynet.ch or @raynet.com.
 }
 },
 "target": "TargetTable_Regex"
 }

The following result table TargetTable_Regex is expected:

Name WorksInRaynet

Marcin 1

John 1

Kate 0

Fallback values

It is possible to define a custom value returned, if the source column does not exist in the table.
For more information about the usage of fallback values, see the Fallback columns chapter.

Switch-case statement

Swich-case statement can be used to define branches for possible values.

The definition has the following syntax:

"<target-column-name>":

{

 "column": "<source-column-name>",

 "switch": [

mailto:@raynet\\.(de|ch|com)$

34ETL Implementation Guide12.5

 {

 "case": "<case-1>",

 "then": "<value-1>"

 },

 {

 "case": "<case-2>",

 "then": "<value-2>"

 },

 {

 "default": "<default-value>"

 }

]

 }

}

It is not possible to mix the property default with case/then in the same object. The default
section is optional, and number of case-then tokens can be any. The default value must be
always the last in the collection.

Example

Given the following table SourceTable:

Name Country

John US

Helmut DE

Marcin PL

Sergey UA

Sami FI

Alon UK

And the following JSON step definition:

 {
 "id": 1,
 "name": "Example of switch-case",
 "type": "map",
 "source": "Countries",
 "target": "Countries_SwitchCase",
 "columns": {
 "Name": "Name",
 "Country": {
 "column": "Country",
 "switch": [

35ETL Implementation Guide12.5

 { "case": "PL", "then": "Poland" },
 { "case": "DE", "then": "Germany" },
 { "case": "US", "then": "United States" },
 { "case": "FI", "then": "Finland" },
 { "case": "UA", "then": "Ukraine" },
 { "default": "Other country" }
]
 }
 }
 }

The following result table Countries_SwitchCase is expected:

Name Country

John United States

Helmut Germany

Marcin Poland

Sergey Ukraine

Sami Finland

Alon Other country

Fallback values

It is possible to define a custom value returned, if the source column does not exist in the table.
For more information about the usage of fallback values, see the Fallback columns chapter.

Custom SQL statement

In some cases, extra customization and flexibility may be required, which is beyond of scope of
simple transforms or switch-case statements. If this happens, you can use custom SQL snippets
for columns.

You can use all language construct of SQLite, like string, date and other operations. Additionally,
some extra functions implemented by ETL library are available (the list and reference can be
found in chapter Extra functions)

{

 "columns":

 {

 "source_column": "source_column",

 "source_column_normalized":

 {

36ETL Implementation Guide12.5

 "sql": "SUBSTR(source_column, 1, 3)"

 }

 }

}

The list of standard functions can be found here: https://sqlite.org/lang_corefunc.html

Example

Given the following table SourceTable:

Name Surname Age

Marcin Otorowski 34

John Smith 51

Kate Binks 25

And the following JSON step definition:

 {
 "id": 1,
 "type": "map",
 "name": "Example of custom SQL columns",
 "source": "SourceTable",
 "columns": {
 "Name": "Name",
 "IsJohn": { "sql": "iif([Name] = \"John\", \"Hello John\", \"Hello, do I know
you?\")" },
 "Substring": { "sql": "SUBSTR([Name], 1, 3)" },
 "Random": { "sql": "random()" }
 },
 "target": "TargetTable_SqlColumns"
 }

The following result table TargetTable_SqlColumns is expected:

Name IsJohn Substring Random

Marcin Hello John Joh
-
684999310708885219
3

John Hello, do I know you? Mar 556681357580138325
8

https://sqlite.org/lang_corefunc.html

37ETL Implementation Guide12.5

Name IsJohn Substring Random

Kate Hello, do I know you? Kat 585046792565859908
8

Note:

Special character " and \ should be escaped in JSON file. This is why in the example
above, a \" token is used instead of a single ".

Arbitrary types, casting and converting

Using the type property lets you define a custom cast or custom type length. This common
property is available for all column types, see more information in chapter Arbitrary column
types.

Advanced topics

This chapter describes the usage of advanced features of the mapping function.

Fallback columns
Fallback is a value, column, SQL statement or any valid column mapping which is used, if the
original source does not contain the required column.

Union mapping
Mapping can use more than one table as a source, in which case it performs a concatenation of
two or more tables.

Arbitrary column types
Database column types are inferred from usage. It is possible to customize this behavior on
column-basis, by changing the required type or its length / range.

Inferring remaining columns
Columns do not have to be all referred by their names. If you want to map them all (or all
which have not been referenced explicitly) you can force the ETL engine to retrieve them
automatically.

Fallback columns

Note:
This column mapping type is available in ETL module version 1.1.300 and newer.

ETL Library makes few assumptions about the existence of tables or columns. Without any
overrides, by default all tables are optional (do not have to exist at all). In case of columns, the
optional state looks a bit different though:

38ETL Implementation Guide12.5

All columns not specifically named, but referenced via the usage of mapRemaining attribute are
optional.

Named columns must exist.

It is possible to define a fallback for every column that references a single column name.
Fallback is another expression, which is taken if the original source column does not exist.

To define a fallback, set-up the fallback property for each affected column, where the value of
fallback follows the same syntax as a typical column definition (minus column type and fallback).
For example, to define that a column Name should be taken, and if it does not exist a value of "n/a"
is expected, use the following:

 "UserName": {
 "column": "Name",
 "fallback": {
 "value": "n/a"
 }
 }

Fallback is supported for the following column mappings:

Simple column mapping
Transformed column mapping
Regular expression mapping
Switch-case mapping

Tips:

You can use a fixed value with null target value to denote that a null value must be placed for a
non-existing column.

You can use a typical mapping syntax to use value from another column

It is not possible to define a different type for fallback column. Fallback always uses the type
from the column it belongs to.

Additionally, it is not possible to nest a fallback in another fallback.

Example

Given the following table Table1:

Name Country Age

Helmut DE 20

39ETL Implementation Guide12.5

Name Country Age

Marcin PL 40

With the following JSON file

 {

 "id": 1,
 "type": "map",
 "name": "Fallback Demo",
 "source": "Table1",
 "columns": {
 "Name": "Name",
 "City": {
 "column": "City",
 "fallback": {
 "value": "n/a"
 }
 },
 "BornYear": {
 "column": "Year",
 "fallback": {
 "sql": "2021 - Age"
 }
 }
 },
 "target": "Table2"
 }

The following Table2 is produced:

Name City BornYear

Helmut n/a 2001

Marcin n/a 1981

Union mapping

It is possible to union two or more tables, regardless of whether the number and names of
columns are the same. To define more than one table during the mapping, simply use an array as
a value of the source property, for example:

 {

 "id": 1,
 "type": "map",
 "name": "Example of union",
 "source": ["SourceTable1", "SourceTable2"],
 "columns": {
 "Name_Uppercase": "Name"

40ETL Implementation Guide12.5

 },
 "target": "TargetTable_TransformedColumns",
 "mapRemaining": true
 }

You can also use wildcards (for example SourceTable*) to match more than one table (more
information about wildcards in the following chapter: Wildcard joining).

The result table will have the same number of rows as all involved tables combined. The number
of columns in the target table will be the same as all columns in all tables combined, minus
duplicates.

Example

Given the following table Table1:

Name Country Age

Helmut DE 20

Marcin PL 40

and the following table Table2:

Name Residence Age

Helmut DE 30

Alon UK 50

With the following JSON file

 {

 "id": 1,
 "type": "map",
 "name": "Union two tables",
 "source": ["Table1", "Table2"],
 "columns": {
 "Name": "Name",
 "Country": "Country",
 "Residence": "Residence",
 "Age": "Age"
 },
 "target": "Table3",
 "mapRemaining": true
 }

The following Table3 is produced (note that there is no de-duplication, and extra columns are

41ETL Implementation Guide12.5

added for rows which were not had them before, thus producing null values in columns Country
and Residence).

Name Country Residence Age

Helmut DE < null> 20

Marcin PL < null> 40

Helmut < null> DE 30

Alon < null> UK 50

Arbitrary column types

By default, the type of each column is inferred from the context. For simply queries, the type may
be inferred from the source table, while for more complex it is either based on the type of the
expression or the actual value type.

In some cases, it may be required to use a specific type, for example to enforce that a string-
based column is written as CHAR(20) and not NVARCHAR(MAX). The same applies to numeric
formats, which also may have different precisions (INT, SMALLINT, TINYINT etc.).

To define an arbitrary type for a column, use the property type, for example:

 {
 "id": 1,
 "type": "map",
 "name": "Example for arbitrary column types",
 "source": "SourceTable",
 "columns": {
 "TypeFromParent": { "from": "ColumnA" },
 "TypeFromExpression": { "from": "ColumnA", "transform": "Uppercase" },
 "ArbitraryType": { "from": "ColumnA", "type": "nvarchar(100)" },
 },
 "target": "TargetTable"
 }

This property is optional - when omitted, the type will be inferred automatically. Note that the
type can be defined for any type of column: simple mapping, a fixed value, custom SQL etc.

Supported types

Several types and their aliases are accepted. You can use MSSQL types or DbType enum values
(https://docs.microsoft.com/en-us/dotnet/api/system.data.dbtype?view=net-5.0). Depending on
the implementation, some types may be unavailable (for example XML or currency).

Examples of valid types (the list is not comprehensive, see the referenced link for a full list):
int

bigint

smallint

nvarchar

https://docs.microsoft.com/en-us/dotnet/api/system.data.dbtype?view=net-5.0

42ETL Implementation Guide12.5

varchar(max)

char(20)

datetime

numeric(18,0)

string

bit

Inferring remaining columns

Map step requires, that you define the list of columns to be mapped. If you do not know the
exact names ahead-of-time, or if just a few columns need to be transformed and the others
should be taken as they are, it is possible to use the automatic inferring.

To do this, set the value of optional parameter m a pRem a ining on the step level to true, for
example:

 {
 "id": 1,
 "name": "Map with remaining",
 "columns": {
 "Column1": "source1",
 "Column2": "source2"
 },
 "target": "OutputTable",
 "source": "InputTable",
 "mapRemaining": true
 }

Example

Let's assume that the input table InputTable has the following structure:

col1 col2 col3

Marcin Otorowski Renault

John Smith Chrysler

Kate Binks Peugeot

When the ETL process is started for the sample JSON file, the following table OutputTable is
returned:

Column1 Column2 col3

Marcin Otorowski Renault

John Smith Chrysler

43ETL Implementation Guide12.5

Column1 Column2 col3

Kate Binks Peugeot

If the parameter m a pRem a ining was set to false or omitted, the following would be produced:

Column1 Column2

Marcin Otorowski

John Smith

Kate Binks

Note that the col3 was not defined in JSON, and yet it made to the OutputTa ble due to the switch
m a pRem a ining set to true. On the other hand, columns col1 and col2 are not present anymore,
because the engine has detected they were referenced by the standard mapping, and thus are
potentially not needed anymore. If you want to include them, you must add a manual definition
for them.

Once m a pRem a ining is set to true, the ETL engine will automatically restore all columns with the
following exceptions:

Columns referenced as source columns for simple mappings (see simple mappings).

Columns referenced as source columns for transformation mappings (see transforming of
values).

Columns referenced as one of the sources for aggregated mapping (see columns aggregation).

Columns referenced by custom SQL mappings are not taken into account when evaluating the
m a pRem a ining switch.

Filtering

Filter step takes one value as input and produces another table with the same schema, but with
the same or lower number of rows, based on filter conditions (subtraction).

The simplest definition has the following form:

44ETL Implementation Guide12.5

{

 "steps":

 [

 {

 "id": 1,

 "name": "Select only John entries",

 "target": "sample",

 "source": "sample_filtered",

 "type": "filter",

 "conditions":

[

 {

 "Name": "John"

 }

]

 }

]

}

Source is by default optional, meaning that the table does not have to be existing. If the table is
missing, the step will not be executed and its target table will not be written. There is a way to
define that the source is required, in which case in case of a missing source table the step will fail
and report an error. More information about setting up required steps can be found in the
following chapter: Optional and required tables.

Example

Given the following table Table_sample:

45ETL Implementation Guide12.5

Name V alue

Marcin 123

John 456

Josh abc

John aaa

And the following JSON:

 {
 "id": 1,
 "type": "filter",
 "name": "Example of filtering",
 "source": "Table_sample",
 "conditions": [
 {
 "Name": "John"
 }
],
 "target": "TargetTable_Filtered"
 }

The following result table TargetTable_Filtered is expected:

Name V alue

John 456

John aaa

Logical operators

Both AND and OR are possible, with a Mongo-inspired syntax. To define AND condition, use $and
as the name, and array of sub-conditions as a value:
"conditions":

[

 {

 "$and":

 [

 {

 "Name": "John"

 },

 {

 "Value": "abc"

 }

]

 }

]

46ETL Implementation Guide12.5

The equivalent operator for OR operation is $or. Nesting is also possible to build some complex
scenarios.

Comparison and other operators

The following operators are supported:

Operator Description and usage

$gt The value is greater than

$gte The value is greater or equal than

$lt The value is less than

$lte The value is less or equal than

$ne The value is not equal to

$eq The value is equal than

$contains The value contains a string

$startsWith The value starts with

$endsWith The value ends with

The syntax for defining this operators is also shared with Mongo. You define the name of the

column as a key, the value is another object with your operator, and its value is the value you

want to use. A few examples with explanation:

Name is not equal to Marcin:
{

 "Name":

 {

 "$ne": "Marcin"

 }

}

Age is greater than 17

{

 "Age":

 {

 "$gt": 17

47ETL Implementation Guide12.5

 }

}

CompanyName contains Raynet
{

 "CompanyName":

 {

 "$contains": "Raynet"

 }

}

CompanyName does not contain Raynet (negation of contains)

{

 "CompanyName":

 {

 "$not":

 {

 "$contains": "Raynet"

 }

 }

}

Custom filtering

Note:

This is advanced topic

Any conditions built using the standard operator are converted to an expression tree which is
queried against the sandbox database. For even greater flexibility, SQLite language constructs
can be used.

To use SQL, simple use the following operator:

Operator Description and usage

$sql The expression to evaluate. It should return True or False.

An example of a filter would be:

[...]

"conditions": [

 {

 "$and": [

 {

 "PrimaryUser": { "$ne": "DGFF" }

 },

 {

 "$sql": "DeviceManufacturer LIKE '%HPE%'"

 }

]

48ETL Implementation Guide12.5

 }

]

[...]

This condition checks if both PrimaryUser is not equal to DGFF (standard operator) AND that the
value of column DeviceManufacturer contains HPE. Also note that you can freely combine built-
in expression with SQL expression as we did in this example.

Grouping and deduplicating

Grouping is a process which covers one of the following use cases:

Having a single table, it writes the output table that has the exact amount of rows, but with
extra meta-columns containing a "group identifier". Two or more elements considered to be
the same have always the same value in the group column. The second extra column being
added is the count of rows in the given group.

Having a single table, it writes the output table that contains aggregated (de-duplicated /
distinct) rows, where the values in each non-grouped column is aggregated with a specified
function (maximum, minimum, average, concatenated value, coalesced value). An extra
column with number of grouped rows is added.

The following snippet shows a functional example required to group rows and enter the
information about the group:

 {
 "id": 1,
 "type": "group",
 "name": "Example of grouping (deduplicate)",
 "source": "Users",
 "by": ["Name", "E-Mail"],
 "target": "Users_Grouped_Deduplicated"
 }

You can opt-in for de-duplication by using the "action" object:

{
 "id": 2,
 "type": "group",
 "name": "Example of grouping (deduplicate)",
 "source": "Users",
 "by": ["Name", "E-Mail"],
 "target": "Users_Grouped_Deduplicated",
 "action": {
 "type": "deduplicate"
 }
 }

At minimum the following properties are required:

ID (must be unique)

Type (must be set to " group")

Source (must be one of the following):

49ETL Implementation Guide12.5

o A string representing the table name

o An integer representing the source as another step

o An object with property "table" set to the name of the source table

o An object with property "step" set to the ID of the source step

Source is by default optional, meaning that the table does not have to be existing. If the table is
missing, the step will not be executed and its target table will not be written. There is a way to
define that the source is required, in which case in case of a missing source table the step will fail
and report an error. More information about setting up required steps can be found in the
following chapter: Optional and required tables.

Following parameters are optional:

by
This defines a single column or a list of columns to be used as grouping keys. Equivalent to SQL
statement Select * FROM <table> GROUP BY <columns>.
If you omit this parameter or set it to an empty list, then all columns are used for grouping.

target
If omitted, the output table is temporary and does not get saved during the LOAD phase.

action
The action to execute. This can be one of the following:

o If the value is a string, then the action of a given type is used. Supported values are
deduplica te and recognize. The values are case-insensitive.

o If the value is an object, then its property type is used to determine the action. The value of
parameter type should be either deduplica te or recognize. The values are case-insensitive.
There are some extra properties available when using the object syntax.

o If the action is omitted, the recognize action is used as the default.

Recognize action

This type of action is used to group and recognize grouped values, but without removing any
rows yet. Instead, the ETL engine compares the values in given columns, groups matching rows
and for each row writes additional two columns:

GROUP_KEY: Containing the locally-unique identifier of the group (integer-based, starting
from 1)

GROUP_COUNT: Containing the number of rows within the same group.

You can customize the naming of both properties by setting the properties groupKeyColum n and
groupCountColum n respectively.

50ETL Implementation Guide12.5

Deduplicate action

This type of action is used to group and consolidate grouped rows. The non-grouped columns are
aggregated using a specific algorithm. ETL engine writes additional extra column for each row:

GROUP_COUNT: Containing the number of rows within the same group.

The default setting of this action use coalescing to produce aggregated value (getting the first
non-null value). You can customize the behavior of aggregation by setting the object columns,
where key is the name of the column to aggregate, and the value is the aggregation method. The
syntax for aggregation is similar to the definition for the join step.

Example #1

Given the following table Users

Name LastSeen Device E-Mail

Marcin 2020-01-02
00:00:00.000

Android marcin@contoso.com

Marcin 2020-01-03
00:00:00.000

Windows marcin@contoso.com

Marcin 2020-01-01
00:00:00.000

Apple < null>

Denis 2020-03-03
00:00:20.000

Windows denis@contoso.com

Denis 2021-02-02
00:10:00.000

Android < null>

Andreas 2021-02-02
00:20:00.000

Windows andreas@contoso.com

and the following JSON file:

 {
 "id": 1,
 "type": "group",
 "name": "Example of grouping (only marking)",
 "source": "Users",
 "by": ["Name", "E-Mail"],
 "target": "Users_Grouped_Mark",
 "action": {
 "type": "recognize"
 }

51ETL Implementation Guide12.5

 },
 {
 "id": 2,
 "type": "group",
 "name": "Example of grouping (deduplicate)",
 "source": "Users",
 "by": ["Name", "E-Mail"],
 "target": "Users_Grouped_Deduplicated",
 "action": {
 "type": "deduplicate"
 }
 }

The following two tables are created:

Table Users_Grouped_Mark:

Name E-Mail LastSeen Device GROUP_KEY GROUP_COU
NT

Marcin marcin@conto
so.com

2020-01-02
00:00:00.000

Android 5 2

Marcin marcin@conto
so.com

2020-01-03
00:00:00.000

Windows 5 2

Marcin < null> 2020-01-01
00:00:00.000

Apple 4 1

Denis denis@contos
o.com

2020-03-03
00:00:20.000

Windows 3 1

Denis < null> 2021-02-02
00:10:00.000

Android 2 1

Andreas andreas@cont
oso.com

2021-02-02
00:20:00.000

Windows 1 1

The other table Users_Grouped_Deduplicated has the following rows:

Name E-Mail LastSeen Device GROUP_COUNT

Marcin marcin@contoso.
com

2020-01-02
00:00:00.000

Android 2

Marcin NULL 2020-01-03
00:00:00.000

Windows 1

Denis < null> 2020-01-01
00:00:00.000

Apple 1

52ETL Implementation Guide12.5

Name E-Mail LastSeen Device GROUP_COUNT

Denis denis@contoso.co
m

2020-03-03
00:00:20.000

Windows 1

Andreas andreas@contoso.
com

2021-02-02
00:20:00.000

Windows 1

Example #2

With the same input Users as in the first example and the following JSON (yellow marks the
difference between Example #1 and Example #2):

 {
 "id": 3,
 "type": "group",
 "name": "Example of grouping (only marking)",
 "source": "Users",
 "by": ["Name", "E-Mail"],
 "target": "Users_Grouped_Mark2",
 "action": {
 "type": "recognize",
 "groupKeyColumn": "ETL-GROUP",
 "groupCountColumn": "ETL-COUNT"
 }
 },
 {
 "id": 4,
 "type": "group",
 "name": "Example of grouping (deduplicate)",
 "source": "Users",
 "by": ["Name", "E-Mail"],
 "target": "Users_Grouped_Deduplicated2",
 "action": {
 "type": "deduplicate",
 "groupKeyColumn": "ETL-GROUP",
 "groupCountColumn": "ETL-COUNT",
 "columns": {
 "Device": "concat",
 "LastSeen": "max"
 }
 }
 }

The following table are created:

Table Users_Grouped_Mark2:

53ETL Implementation Guide12.5

Name E-Mail LastSeen Device ETL-GROUP ETL-COUNT

Marcin marcin@conto
so.com

2020-01-02
00:00:00.000

Android 5 2

Marcin marcin@conto
so.com

2020-01-03
00:00:00.000

Windows 5 2

Marcin < null> 2020-01-01
00:00:00.000

Apple 4 1

Denis denis@contos
o.com

2020-03-03
00:00:20.000

Windows 3 1

Denis < null> 2021-02-02
00:10:00.000

Android 2 1

Andreas andreas@cont
oso.com

2021-02-02
00:20:00.000

Windows 1 1

The other table Users_Grouped_Deduplicated2 has the following rows:

Name E-Mail LastSeen Device ETL-COUNT

Marcin marcin@contoso.
com

2020-01-03
00:00:00.000

Android |
Windows

2

Marcin NULL 2020-01-03
00:00:00.000

Windows 1

Denis < null> 2020-01-01
00:00:00.000

Apple 1

Denis denis@contoso.co
m

2020-03-03
00:00:20.000

Windows 1

Andreas andreas@contoso.
com

2021-02-02
00:20:00.000

Windows 1

Note the differences between both examples:

For the first entry, without specifying any aggregation, the first non-null empty was taken,
which resulted in Android in the first example. In the second example, the column is built
using Concat, which means that the value in the Device column joins all grouped values (with
| as a separator).

In the same row, the last seen date is different. In the first example 2020-01-02 00:00:00.000
was taken but in the second one where the MAX aggregation was used, the date is set to 2020-

54ETL Implementation Guide12.5

01-03 00:00:00.000 (the maximum of two values in the group).

The extra columns ETL-COUNT and ETL-GROUP are named after the values that were defined
in the second example, but omitted from the first one. In the first one, their names are
defaulted to GROUP_KEY and GROUP_COUNT.

Default aggregation of duplicated values

You can use JSON property defaultAggregation on the action object to define the required
aggregation, should there be no other defined on a column-base.

Joining

Joining is an operation which takes two or more tables and combines them to a single on.
Combination of rows is performed using a special column or set of columns, called joining keys.
They should be locally unique to make actual sense.

Since two tables may but do not have to have all the same rows and keys, conflicts may arise:

Left table may have some unmatched rows in the right table

The right table may have some unmatched rows in the left table

There are three basic strategies which dictate what to do in this case:

Outer joining
Will combine all matching rows, and for all unmatched it will take them as they-are,
using NULL values are default for unmatched values. Typical use case: list of devices
scanned by system A and system B may have a lot of entries in common, but some
devices may be present only in system A and some devices only in system B. Outer join
will ensure that all devices are present in the target table, even unmatched devices
from system A and unmatched devices from system B.

Left joining
Will treat the left column as a master table and write all rows which were matched
between left and right + any unmatched rows from the left table. Unmatched rows
from the right column will be discarded. A typical example is lookup, in which the left
table is the list of customers and the right table is the list of addresses. In the result

55ETL Implementation Guide12.5

table, we are interested in all results from the left table (customers) with as much extra
information as possible from the address table, but we do not want to include
unmatched addresses.

Inner joining
Will write only rows which exist in both tables. Unmatched rows from the left table and
the right table will be ignored. Typical example is where the left table contains names
and the right tables surnames. The output table should have name and the surname,
we do not want partial matches with only name or only surname.

Join step requires a bit of extra information about the key used to join (ID). This key must be
present in all joined tables, otherwise an exception will be thrown.

You may also join more tables at once (within the same strategy).

Joined tables are by default optional, meaning that the tables do not have to be existing. If any
table is missing it will not be joined. If only a single table exists, then it is taken as-is and
returned as the output. If all tables are missing then the step will not be executed and its target
table will not be written. There is a way to define required tables, in which case in case of a
missing source table the step will fail and report an error. More information about setting up
required steps can be found in the following chapter: Optional and required tables.

Cell merging

Join operation uses a convention based approach. When defining a join, the only information
required is:

Which tables need to be joined

Which columns are the key used to join them

All tables taking a part in the join must have all columns specified as the keys. For other columns,
the following logic is applied:

If a column exist in exactly one of joined tables, it is taken as-is

If a column exists in two or more tables, the values in it are merged using a specific
aggregation strategy. The default aggregation is to join the values with a pipe " | " separator.
This may not always be the best choice, so other strategies are also available.

For example, given the following:

Table OS1

Computer OperatingSystem V alueFromOS1

1 Windows A

2 Linux B

56ETL Implementation Guide12.5

Computer OperatingSystem V alueFromOS1

3 macOS C

4 Android D

Table OS2

Computer OperatingSystem V alueFromOS2

2 BlackBerryOS AA

3 Ubuntu BB

4 Windows CC

5 Windows DD

and the following JSON definition

{
 "steps": [
 {
 "id": 1,
 "type": "join",
 "name": "join demo",
 "sources": ["OS1", "OS2"],
 "on": ["Computer"],
 "strategy": "left",
 "target": "joined_os_left"
 },
 {
 "id": 2,
 "type": "join",
 "name": "join demo",
 "sources": ["OS1", "OS2"],
 "on": ["Computer"],
 "strategy": "inner",
 "target": "joined_os_inner"
 },
 {
 "id": 3,
 "type": "join",
 "name": "join demo",
 "sources": ["OS1", "OS2"],
 "on": ["Computer"],
 "strategy": "outer",
 "target": "joined_os_outer"
 }
]
}

57ETL Implementation Guide12.5

The following tables are returned:

Table joined_os_left

Computer OperatingSystem V alueFromOS1 V alueFromOS2

1 Windows A < null>

2 Linux B AA

3 macOS C BB

4 Android D CC

Table joined_os_inner

Computer OperatingSystem V alueFromOS1 V alueFromOS2

2 Linux B AA

3 macOS C BB

4 Android D CC

Table joined_os_outer

Computer OperatingSystem V alueFromOS1 V alueFromOS2

1 Windows A < null>

2 Linux B AA

3 macOS C BB

4 Android D CC

5 Windows < null> DD

Remarks and points of interest:

Table joined_os_outer has most of rows, as it contains all unique values from the column
Computer present in both tables.

58ETL Implementation Guide12.5

Table joined_os_inner has the least of rows, because it contains only values present in both
tables.

No extra definition for "overlapping" columns was present in the JSON file, which means that
the default COALESCE (first non-null) aggregation will be used. This is why the column
OperatingSystem in all three output tables contains a single non-empty value. The order of
coalescing a value should be inferred from the order of joined tables.

Columns V alueFromOS1 and V alueFromOS2 are unique in all tables, and are taken as-is.
Missing values are filled with < null>.

Overriding cell merging strategy

As already mentioned, the default strategy of merging/aggregation of overlapping columns uses
concatenation with a pipe (|) character.

There are two ways of overriding the strategy:

For all columns in a step

Specific types for selected columns.

The order how ETL resolves defined aggregations is:

1. Column-specific aggregation

2. Step-scoped aggregation

3. Default aggregation (concatenate values using pipe as separatator).

Step merging strategy

Note:
This aggregation is available in ETL module version 1.1.281 and newer.

The default aggregation used for all columns in the given steps can be defined by defining the
value of a property called defaultAggregation. Below is a sample code to demonstrate:
{

 "steps": [

 {

 "id": 1,

 "type": "join",

 "name": "join demo",

 "sources": ["OS1", "OS2"],

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_outer_max",

 "defaultAggregation": "coalesce"

 },

]

}

59ETL Implementation Guide12.5

The value can be a string or an object. For more information about supported aggregations, see
the following chapter: Defining aggregations.

Column-specific merging strategy

It is possible to specify custom aggregation (similar to what the complex column mapping
does). In order to do that, specify a special section which will define how to handle conflicts. The
value of that property (conflicts) is an object where each property is the name of the column to
define, and the value is the aggregation method. The value can be either a string or an object. For
more information about supported aggregations and the ways of resolving conflicts, see the
following chapter: Defining aggregations.

The sample below shows how to get the max value from the OperatingSystem column (1), how
to concatenate all values using custom separator (2) and how to coalesce columns by selecting
the first non-empty value (3):
{

 "steps": [

 {

 "id": 1,

 "type": "join",

 "name": "join demo",

 "sources": ["OS1", "OS2"],

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_outer_max",

 "conflicts": {

 "OperatingSystem": "max"

 }

 },

 {

 "id": 2,

 "type": "join",

 "name": "join demo",

 "sources": ["OS1", "OS2"],

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_outer_concat",

 "conflicts":

 {

 "OperatingSystem": {

 "type": "concat",

 "separator": " or "

 }

 }

 },

 {

 "id": 3,

 "type": "join",

 "name": "join demo",

 "sources": ["OS1", "OS2"],

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_outer_coalesce",

 "conflicts":

 {

 "OperatingSystem": "coalesce"

60ETL Implementation Guide12.5

 }

 }

]

}

Like already mentioned, the way of resolving a conflict is defined via a mapping of a column
name and a matching value (string or an object) representing the aggregation. In the example
above, both syntax variants are shown: for column step 2, a concatenation with a custom
separator is used (object notation), Steps 1 and 3 use a simple string notation.

Using the same input tables as in the chapter Cell merging, the following tables are written with
the above JSON (the yellow color highlights important changes and differences):

Table joined_os_outer_max

Computer OperatingSystem V alueFromOS1 V alueFromOS2

1 Windows A < null>

2 Linux B AA

3 Ubuntu C BB

4 Windows D CC

5 Windows < null> DD

Table joined_os_outer_concat

Computer OperatingSystem V alueFromOS1 V alueFromOS2

1 Windows A < null>

2 Linux or BlackBerryOS B AA

3 macOS or Ubuntu C BB

4 Android or Windows D CC

5 Windows < null> DD

Table joined_os_outer_coalesce

61ETL Implementation Guide12.5

Computer OperatingSystem V alueFromOS1 V alueFromOS2

1 Windows A < null>

2 Linux B AA

3 macOS C BB

4 Android D CC

5 Windows < null> DD

Remarks and points of interest:

Table joined_os_outer has most of rows, as it contains all unique values from the column
Computer present in both tables.

Table joined_os_inner has the least of rows, because it contains only values present in both
tables.

No extra definition for "overlapping" columns was present in the JSON file, which means that
the default coalesce (first non-null) will be used. This is why the column OperatingSystem in
all three output tables contains a single non-empty values from tables ordered by the master
joining order.

Columns V alueFromOS1 and V alueFromOS2 are unique in all tables, and are taken as-is.
Missing values are filled with < null>.

Multiple conflict handling strategies

You can define many conflict resolving strategies for each columns of your interest. The columns
that you don’t define will use the standard joining strategy (concatenation with pipe character).

 {
 "id": 3,

 "type": "join",

 "name": "join demo",

 "sources": ["OS1", "OS2"],

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_outer_coalesce",

 "conflicts":

 {

 "OperatingSystem": "coalesce", // take the first not-empty operating

system

 "InventoryDate": "max" // take the maximum date

 }

 }

62ETL Implementation Guide12.5

Priorities when joining the cell values

Unless otherwise specified, the columns will be aggregated in the order inferred from the list of
tables (for example OS1 then OS2, as in the JSON above). You can also define a custom ordering
per-column - the topic is covered in the following chapter: Tables priority

Order of joining

Order of tables is important if (any of the following):

LEFT join is used, or

CONCAT aggregation is used for any column, or

COALESCE aggregation is used

LEFT join is sensitive to the order, because the most left-table will be used as a join master, and
switching the tables may produce different results in the output table.

CONCAT and COALESCE are also sensitive to the order because they process the value from left
to right.

The joining order is determined by the order they appear in JSON file. You do not need to do
anything extra if that order is the same for all conflicting columns in the joined tables. However,
there may be a need to define a custom joining order on a column basis, which is described in
the next chapter.

Note:

The tables matched by wildcard joining (for example Ta ble*) are ordered in an non-
deterministic way if more than one table matches the wildcard.

Tables priority

For CONCAT and COALESCE columns, the default joining priority is used (the one that the user
defined for the join step). In many cases, it may be required to change the priority on column
basic. Consider the following example:

Data from system A has generally all values, but a its column A is not 100% accurate
(approximation). The column B in this table is always correct.

Data from system B has less data, but a 100% correct value for that column A. It contains values
in column B which on the other hand is unreliable.

We need to combine two data sets in which

o If the same row in both tables has a value in Table 1 Column A, this value should win over
Table 2 Column B.

o If the same row has only value of column A in Table 2, we should use it as a fallback.

o If the same row in both tables has a value in Table 2 Column B, this value should win over

63ETL Implementation Guide12.5

Table 1 Column B.

o If the same row has only value of column B in Table 1, we should use it as a fallback.

So essentially, we define the following priority:

General joining priority: Table 1 > Table 2

Priority for values in column A: Table 1 > Table 2

Priority for values in column B: Table 2 > Table 1

To define this in JSON, use the following syntax:
{

 "id": 3,

 "type": "join",

 "name": "join demo",

 "sources": ["Table 1", "Table 2"],

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_outer_coalesce",

 "conflicts":

 {

 "OperatingSystem": {

 "type": "coalesce",

 "priority": ["Table 2", "Table 1"]

 }

 }

}

The syntax for the priority is the same as the definition of source tables.

64ETL Implementation Guide12.5

You do not have to define all tables in the Priority property. If you omit some of them, they will
be treated as fallback anyway. For example, in the above snippet, if only Table 2 was provided in
the priority, Table 1 and any other table will be always treated with a lower priority.

Note:

 If you omit the tables you lose the control of defining the priority between omitted
tables. In this case, the default priority will be used for them. The tables that you
specified still win.

Wildcard priority

You can use wildcards when defining the joining priority. For example, if you generally prefer all
tables containing a keyword "final" over "tables that end with "raw", you could do the following:
 "conflicts":

 {

 "OperatingSystem": {

 "type": "coalesce",

 "priority": ["*final*", "*raw"]

 }

 }

You can also mix wildcard and non-wildcard strings. The priority order is not validated, should
there be no column matching the priority order the next will be taken.

Example

65ETL Implementation Guide12.5

Given the following tables containing approximated and actual age:

Table Approximation

Name Age

Marcin 34

Ed 70

Table Observation

Name Age

Marcin 35

Jeremy 20

And the following assumptions:

Join two tables by the name

Make sure that if the value from Observation and Approximation are in conflict, prefer the
Observation as it is more accurate

For entries present in only a single to these two tables, take the entry as-is

We would write the following JSON:

 {
 "id": 1,
 "type": "join",
 "name": "Join with priority",
 "sources": ["Approximation*", "Observation*"],
 "strategy": "outer",
 "target": "Age",
 "on": "Name",
 "conflicts": {
 "Age": {
 "type": "coalesce",
 "priority": ["*Obs*", "*Approx*"]
 }
 }
 }

Note: The example introduces a concept of wildcard joining, in which we do not have to specify
the full name, but rather only a mask to match against. This works on both table selection level
and on priority level.

The result would be

Table Age

66ETL Implementation Guide12.5

Name Age

Ed 70

Jeremy 20

Marcin 35

Remarks and points of interest:

In the priority order ["*Obs*", "*Approx*"] we could also skip the last item (leaving only
["*Obs*"]) . Like mentioned before, columns which are not explicitly named in the priority
list automatically receive the lowest priority.

In the row M a rcin the value of Age is 35. This is the value coming from the Observation table,
although the master joining first took the Approximation table.

Other values are taken from either of two tables, as they do not have the respective counter
entries in the other table.

Wildcard joining

If your source tables are already well-formed and you do not want to define the joining tables
manually, you can use so called wildcard syntax. If the name of the table contains an asterisk, all
tables matching the pattern will be used for joining. For example, the previous step were OS1
and OS2 was joined together could be also represented with the following syntax:
{

 "id": 1,

 "type": "join",

 "name": "join demo",

 "sources": "Table*",

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_outer_coalesce"

}

This is a relatively easy to way to make big joins of several tables, provided that:

The match the pattern Table*

They all contain a column “Computer”

If you have some prior knowledge about the columns and their content, and based on that you
want to define preferences for joining, you can do it on the column basis:
{

 "id": 1,

 "type": "join",

 "name": "join demo",

 "sources": "Table*",

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_outer_coalesce",

 "conflicts":

67ETL Implementation Guide12.5

 {

 "OperatingSystem": {

 "type": "coalesce",

 "priority": ["Table 2", "Table 1"],

 }

 }

}

In this case, all tables matching the pattern will be joined, and in case of conflict in the column
OperatingSystem the value from Table 2 will be preferred over Table 1 over some other, not
mentioned tables. Wildcards for joining priority are also supported (see Tables priority for more
information)

Column selection

If nothing else is provided, all columns from all joined tables will be present in the output table.
It is possible to limit this by providing a white list of columns to be written. Any columns not
mentioned in the list will be omitted from the target result (note: key columns are automatically
included). To define the required columns, use the following syntax:

{

 "id": 1,

 "type": "join",

 "name": "join demo",

 "sources": ["Table1", "Table2", "Table3"],

 "columns": ["Name", "Surname", "Age"],

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_outer_coalesce"

}

Advanced deduplicating

Deduplicating is a process of taking a table as an input, group the similar records by one or more
columns, and then decide on each set how to proceed with the records.

Deduplication step has the following basic syntax:

{

 "id": 11,

 "name": "Deduplicate table Duplicates, take random",

 "type": "deduplicate",

 "source": "Duplicates",

 "target": "Normalized_Duplicates_Random",

 "by": ["cn", "dn"],

 "strategy": "random"

}

68ETL Implementation Guide12.5

In this sample, rows will be grouped by the same values in the cn and dn column. For each
group, a random row will be picked and the rest will be skipped.

Selecting a random row may sound a bit weird, so the engine supports further options:

Strategy type Description

None If a duplicate is detected, all duplicated rows will be removed.

Random Take random row (this is not reproducible between sessions).

Any Take first row (this is reproducible between sessions).

All Take all values (no deduplication)

MaxValue Take a row with maximum value in a specified column (requires extra

config, see below)

MinValue Take a row with minimum value in a specified column (requires extra

config, see below)

Source is by default optional, meaning that the table does not have to be existing. If the table is
missing, the step will not be executed and its target table will not be written. There is a way to

69ETL Implementation Guide12.5

define that the source is required, in which case in case of a missing source table the step will fail
and report an error. More information about setting up required steps can be found in the
following chapter: Optional and required tables.

Using MaxValue and MinValue strategy

These are handy built-in strategies that can be used with duplicated rows, for which one of their
column values determines the priority (as a number, string, date etc.). Typical example would
be: once two or more similar devices are found, take only the one that has been created latest,
ignore the other devices).

Using of these strategies is only possible if a column name is provided, which can be done via
the value parameter:

{

 "id": 11,

 "name": "Deduplicate table Duplicates, take random",

 "type": "deduplicate",

 "source": "Duplicates",

 "target": "Normalized_Duplicates_Random",

 "by": ["cn", "dn"],

 "strategy": {

 "name": "MaxValue",

 "value": "LastSeenDate"

 }

}

Splitting

Splitting is a process of taking an input table with N row, and producing N + X row (X >= 0) by
splitting a value from a specific column.

Basic syntax for splitting:

 {
 "id": 1,
 "name": "<name>",
 "type": "split",
 "source": "<source>",
 "target": "<target_if_persisted>",
 "column": "<the-column-to-split>"
 },

Source is by default optional, meaning that the table does not have to be existing. If the table is
missing, the step will not be executed and its target table will not be written. There is a way to
define that the source is required, in which case in case of a missing source table the step will fail
and report an error. More information about setting up required steps can be found in the
following chapter: Optional and required tables.

By default, a comma (,) is used as a separator. You can define your own separator by overriding
the split property. By default, split is set to vertical (meaning that a row will be split into some
more rows, this is currently the only value supported). To change the separator, use object
notation:

70ETL Implementation Guide12.5

{
 "id": 1,
 "name": "Unpivot cars table",
 "type": "split",
 "source": "Cars_Pivot",
 "target": "Cars_Split",
 "column": "cars",
 "split": { "type": "vertical", "separator": ";" }
 }

The separator can have more than one character. Bear in mind, that white-spaces are not
trimmed, so it is generally up to you.

Example

Given the following input table Cars_Pivot:

Id Name Cars

1 Marcin BMW,Renault

2 Juergen Open,Peugeot

3 Ali VW

4 Denis Audi

And the following JSON definition:

 {
 "id": 1,
 "name": "Unpivot cars table",
 "type": "split",
 "source": "Cars_Pivot",
 "target": "Cars_Split",
 "column": "cars"
 }

The following table Cars_Split is created:

Id Name Cars

1 Marcin BMW

1 Marcin Renault

2 Juergen Open

71ETL Implementation Guide12.5

Id Name Cars

2 Juergen Peugeot

3 Ali VW

4 Denis Audi

Note:

There is a special chapter in the Enrichment section (Split lookups) which shows a
similar use-case of splitting the value in a column to make a look-up queries. It is
recommended to use that approach if the table is used solely for the enrichment
purpose.

Enriching

Enriching is an operation which does not translate directly to any SQL query. The basic principle
of enrichment relies on look-up, where a selected table (enriched table) is being updated by
writing values to one of its columns (enriched column), based on values found in other table.

Source is by default optional, meaning that the table does not have to be existing. If the table is
missing, the step will not be executed and its target table will not be written. There is a way to
define that the source is required, in which case in case of a missing source table the step will fail
and report an error. More information about setting up required steps can be found in the
following chapter: Optional and required tables.

Example

For this example, let's consider three tables:

Table People contains the list of people, with an unique ID, name, address and the car plates.

Table Car contains a mapping between car registration and the address of its owner

Table Address contains a mapping between the name and the address.

Table People

Id Name Address CarRegistration

1 Marcin Paderborn PB-OT-123

72ETL Implementation Guide12.5

Id Name Address CarRegistration

2 John < NULL> PB-JO-123

3 Andreas < NULL> < NULL>

Table Car

CarRegistration Address

PB-OT-123 Szczecin

PB-JO-123 Berlin

PB-JK-123 Lichtenau

Table Address

Name Address

Piotr Krakau

Adrian Stettin

Simon Dortmund

The problem that needs to be solved is the column Address in the table People. We want to
enrich that table by adding values to the columns that do not have them yet. However, the other
tables do not provide an easy matching via JOIN operator, which is where the enrichment kicks
in.

The basic idea is:

1. If there is already an address in the table People we take it as-is. Otherwise, go to the next
point.

2. For remaining rows with still empty value of the address, if there is an entry in the Address
table, where the value of the column Name matches the value in the People table / Name
column, then we should take it from there. Otherwise, go to the next point.

3. For remaining rows with still empty value of the address, if there is an entry in the Car table,
where the value of the column CarRegistration matches the value in the People table /
CarRegistration column, then we should take it from there. Otherwise, go to the next point.

4. If there are still rows with missing address in the People table, we take n/a as a placeholder.

73ETL Implementation Guide12.5

This operation can be achieved by the following JSON definition:

 {
 "id": 1,
 "name": "Enrich People with other tables",
 "type": "enrich",
 "source": "People",
 "target": "People_enriched",
 "column": "Address", // the column to be enriched - point (1)
 "lookup": [
 {
 "in": "Car", // point (2) - lookup [People].[Car]
 "key": "CarRegistration", // matching the value from [Car].[CarRegistration]
column.
 "take": "Address" // if found, take [Car].[Address]
 },
 {
 "in": "Address", // point (3) - lookup [People].[CarRegistration]
 "key": "Name", // matching the value from [Car].[CarRegistration] column.
 "take": "Address" // if found, take [Address].[Address]
 },
 {
 "take": {
 "value": "n/a" // point (4) - if all the previous attempts did not
resulted in a non-null value, then use n/a.
 }
 }
]
 }

As such, the lookups property is an array of objects which have one of the following structures:

An object defining the in, key and take properties for look-ups

An object defining only the value table for a fall-back.

The lookup items are ordered and used from the top to the bottom. Once a value for the row can
be found from a look-up, it is not going to be looked-up in other sources (for that row). The
element in is the look-up source. It can be another step (referenced by ID, see chapter Chaining
steps) or a table name (string).

Note:

Enrichment does not override the values in the enriched columns that are already not
null. If you want the results of the look-up to be not affected by the state of the current
table, use a column name that does not exist in the first table.

Once the above JSON is started, the following table People_Enriched is returned:

Id Name Address CarRegistration

1 Marcin Paderborn PB-OT-123

74ETL Implementation Guide12.5

Id Name Address CarRegistration

2 John Berlin PB-JO-123

3 Andreas Stettin < NULL>

Enriched values are highlighted using the yellow color to show the differences between the
original table.

Look-up values

The look-up target (property take) is using the same syntax as the column mapping. It supports
however a limited sets of functions, including taking values as-is, transforming them or using
fixed values.

Note:

Enrichment take element does not support Auto expressions! You can use SQL
expression though if you need the greatest flexibility.

Due to this, it is possible to use the following combinations:

Taking value from a column without transforming it
{

 "in": "Car",

 "key": "CarRegistrationId",

 "take": "Address"

}

Taking value from a column with a transform (for example uppercase)
{

 "in": {

 "name": "Car",

 "transform": "Uppercase"

 },

 "key": "CarRegistrationId",

 "take": "Address"

}

Note:

It makes no sense to use fixed values for non-fallback values. If the value is fixed and is
not-null, all subsequent look-up items will always be ignored.

Split look-up

Split look-up describes the following scenario:

There is an input table to be enriched with data from another table(s).

75ETL Implementation Guide12.5

There is another table which has the information to be enriched with.

However, the second table does not have a normalized column that could be used for
matching, because its matching key candidates are aggregated - for example separated by an
arbitrary separator.

Consider the following table:

Table EComputer

Computer IpAddress Domain

HOST1 192.168.170.1 DomainA

HOST2 192.168.170.2 < null>

HOST3 192.168.170.6 < null>

Table EAddressDomain

IpAddress Domain

192.168.170.1; 192.168.170.2 DomainB

192.168.170.3; 192.168.170.4 DomainC

192.168.170.5 DomainD

We want to enrich the first table, so that its < null> values in the Domain column are set to
matching values from EAddressDomain (column Domain). To identify and lookup a proper
device, we use its IP address. However, there is no straightforward way to do this, because the
table EAddressDomain contains aggregated lookup keys, in form of the column IpAddress,
where the values are separated with "; " (semicolon followed by space).

A workaround would be to use another Split step to convert the second table to a normalized
version, and then continue with the enrichment. The same can be achieved much quicker and
with a less verbose way, by using an automatic cell separator.

{
 "id": 1,
 "name": "Enrich EComputer with EAddressDomain",
 "type": "enrich",
 "source": "EComputer",
 "target": "EComputer_enriched",
 "column": "Domain",
 "lookups": [

76ETL Implementation Guide12.5

 {
 "in": "EAddressDomain",
 "key": "IpAddress",
 "separator": "; ",
 "take": "Domain"
 },
 {
 "take": { "value": "n/a" }
 }
]
 }S

After adding a separator and executing the JSON, the following table will be created:

Table EComputer_enriched

Computer IpAddress Domain

HOST1 192.168.170.1 DomainA

HOST2 192.168.170.2 DomainB

HOST3 192.168.170.6 n/a

Remarks and points of interest:

HOST1 remained unchanged, because it already had a value in the Domain column.

HOST2 received a value of DomainB, because its IP address 192.168.170.2 has been found in
the list of IP addresses in the second table.

HOST3 has received a value of n/a, because its IP address was not found in any of the list of IP
addresses in the second table. More details about fallbacks can be found in this section.

Look-up keys

The value of key parameter is the name of the column used for look-up. If you provide it as a
string, it is assumed the column has the same name in both main table and the table being used
for look-ups. If the columns have different names, use the following syntax:
{

 "in": "Car",

 "key": {

 "primary": "CarRegistrationId",

 "foreign": "CarRegistration_FK"

 },

 "take": "Address"

}

Where the value for primary property is the name of the column in the main table (enriched
table), and the value of the foreign property is the equivalent column in the table used as a look-

77ETL Implementation Guide12.5

up table.

Fallback

The last item in the enrichment list may be a fallback, which provides a way to guarantee there is
a non-null value in the enriched column once the transformation is over.

{

 "take": {
 "value": "n/a"
 }
}

The fallback is defined by omitting any parameters except of the value, which should be a fixed
value to be used as a last-resort if all enrichment steps failed to deliver a non-null value.

You can safely omit the last step (fallback). If fallback is not defined (all look-up items have
parameter in) then NULL will be used as a fallback value.

Value types

The value type is inferred from the context. To enforce an arbitrary column type (for example
VARCHAR(128)) use the property type. More information about arbitrary types can be found in
chapter Arbitrary column types

Consolidating look-up targets

If all your tables have the same look-up column and key, you can use an array for the value of in
parameter. For example, the following two statements are equal:
"lookup": [

 {

 "in": "Cars1",

 "key": "CarRegistration",

 "take": "Address"

 },
 {

 "in": "Cars2",

 "key": "CarRegistration",

 "take": "Address"

 }

]

Is equal to the following (consolidated in property):

"lookup": [

 {

 "in": ["Cars1", "Cars2"],

 "key": "CarRegistration",

 "take": "Address"

 }

]

The priority of lookups is then defined by the order in which they appear in the in statement.

78ETL Implementation Guide12.5

Chaining steps

Frequently, a step is just an intermediary operation for another steps. For example, having two
raw tables, before we can join them at all we need to make sure that:

Both have normalized columns, including joining keys which must have the same names

That the values in these columns are normalized and comparable

That we only have the columns that we need

In this typical scenario, the user would introduce first a single mapping step for each table (to
prepare its data), and then the second actual join step which uses the prepared tables. In
workflow editor, this is represented by the following schema:

You can define as many steps as required, and just tell ETL engine how to link them (chain)
together. The steps are never executed in the order they appear in JSON file, but more like in the
actual order determined by the set of dependencies and inter-links.

79ETL Implementation Guide12.5

Previously, we defined sources for steps linking to source tables, for example:
 "steps": [

 {

 "id": 2,

 "name": "Normalize Sample",

 "type": "map",

 "source": "sample",

 [...]

In order to define a source to be another step, simply write its ID instead:
 "steps": [

 {

 "id": 2,

 "name": "Normalize Sample",

 "type": "map",

 "source": 1,

 [...]

Using this example, output of step 1 will be used as an input for step 2.

The same principle follows for the join tables:
{

 "id": 3,

 "type": "join",

 "name": "join prepared tables",

 "sources": [1, 2],

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_tables"

}

You can also combine steps and source tables, but since JSON array may contain either strings or
numbers, there is a special syntax for that. To combine table abc, def and results of steps 1 and 2
use the following:
{

 "id": 3,

 "type": "join",

 "name": "join prepared tables",

 "sources": [

 {

 "table": "abc"

 },

 {

 "table": "def"

 },

 {

 "step": 1

 },

 {

 "step": 2

 }

],

 "on": ["Computer"],

 "strategy": "outer",

 "target": "joined_os_tables"

80ETL Implementation Guide12.5

}

Optional and required tables

In many places, it is possible to define a source table or a source step for operations (for example
a source table for map step, source tables for join/enrich operations etc.).

Unless otherwise specified, the source is by default optional. This means that the following two
examples:

 {
 "id": 1, // unique ID
 "type": "map",
 "name": "Description of the step",
 "source": "Sourcetable",
 "columns": {
 // a dictionary of columns
 [...]
 },
 "target": "The name of the output table"
 }

or

 {
 "id": 1, // unique ID
 "type": "map",
 "name": "Description of the step",
 "source": 1, // step id
 "columns": {
 // a dictionary of columns
 [...]
 },
 "target": "The name of the output table"
 }

will not fail if the table Sourcetable or table created by step 1 do not exist.

To mark a table or a step as "required", use the object notation in the following form:

 {
 "id": 1, // unique ID
 "type": "map",
 "name": "Description of the step",
 "source": {
 "step": "Sourcetable",
 "required": true
 },
 "columns": {
 // a dictionary of columns
 [...]
 },
 "target": "The name of the output table"
 }

or

81ETL Implementation Guide12.5

 {
 "id": 1, // unique ID
 "type": "map",
 "name": "Description of the step",
 "source": {
 "step": 1, // step id
 "required": true
 },
 "columns": {
 // a dictionary of columns
 [...]
 },
 "target": "The name of the output table"
 }

By setting the property required to true, the ETL engine will check if the table exists before
starting the execution.

The following rules apply:

If the source is a required table and the table does not exist in the source, the process will
throw an exception before it is even started.

If the source is a required wildcard, then at least one table matching the pattern must exist in
the source, otherwise the process will throw an exception before it is even started.

If the source is a required step, then the referenced step must produce a table. Some steps will
not produce any output if their dependencies are not satisfied. For example, if your step
transforms the data from a filter step, then it implicitly means that the source table for that
filter step must exist, otherwise the filter step will not produce any value. More information
about linking the steps together can be found in the following chapter: Chaining steps.

Programmability

This chapter discusses how to extend the ETL engine with SQL snippets.

SQL environment

Creating reusable scripts

To promote usability and enable easier testing of SQL expressions, it is possible to encapsulate
SQL snippets and store them separately from the JSON definition.

Once the ETL engine loads the ETL definition, it looks for the file which has the same file name as
your JSON definition but with extension .SQL. If it finds it, it uses its content in all sessions created
for evaluation of SQL expressions. Writing scripts in that file is much easier than inline
expressions in the JSON file, because of support for new lines, lack of necessity to escape special
characters.

The format of the .SQL file is not a standard SQL though. Its content should be of the following

82ETL Implementation Guide12.5

syntax, where each function is defined like:

def <MacroName>(@<param1>, @<param2>, ...)
 <macro-body>

For example, the following is a custom file which contains two macros

def capitalize(@val):
 UPPER(substr(@val, 1, 1)) + LOWER(substr(@val, 2))

def isNullOrEmpty(@text):
 @text IS NULL

Parameter names must always start with ‘@’ sign. The body can span over several lines, and it
must be a valid SQLite syntax. You can reference the parameters, also using the ‘@’ syntax. In this
example, macro capitalize takes a value (@val) and returns a capitalized version of it. The other
one isNullOrEmpty returns 1 or 0, depending on whether the parameter is null.

In order to use the macro in your JSON code, prepend its name with ‘!’ and followed by the list of
arguments, for example:
{

 'sql': !capitalize(name)'

}

Macros support column names and expressions. Bear in mind, that commas (,) have a special
meaning, they separate the arguments. This is why the following will fail:

{

 'sql': !capitalize(SELECT col1, col2 FROM table)'

}

Instead, enclose the expression with braces to indicate that the commas belong to the
argument.

Recursive calls

Macros can be called recursively (a macro calls another macro or even itself). Bear in mind that
ETL engine limits the number of recursion levels.

Extra functions

Note:
These functions are available in ETL module version 1.1.271 and newer.

ETL extends capabilities of SQLite engine by including the following, non-standard functions:

SHA1
Returns a 40-character string representing 160-bit (20 bytes) SHA1 hash of an input element.

83ETL Implementation Guide12.5

This function requires a single parameter.

MD5
Returns a 32-character string representing 128-bit (16 bytes) MD5 hash of an input element.
This function requires a single parameter.

REGEXP
Returns true if the value matches a given expression. This functions requires two parameters.

Sample usages:

[Mail] REGEXP "@raynet\.(de|ch|com)$"

Returns 1 if the value from the M a il column matches the given pattern.

REGEXP ("@raynet\.(de|ch|com)$", "m.otorowski@raynet.de"

(Alternative syntax) Returns 1 if the value from the M a il column matches the given pattern.

SHA1([Mail)

Returns 40-byte SHA-1 hash of the value from the M a il column.

Special characters and escaping sequences in Regular Expression patterns

Regular expressions use \ (backslash) as an escape sequence. Bear in mind the same escape
sequence is used by JSON schema. This means, that when escaping a regular expression inside a
JSON file, it is necessary to perform "double-escaping".

For example, to test whether the name consists of letters, followed by a dot, followed by a
number, the following Regular Expression can be used:
^[a-zA-Z]+\.[0-9]+$

Explanation:

^ means this is the beginning of the string

$ means the string ends here

[a-zA-Z]+ - one or more instances of characters from range a-z or A-Z.

[0-9]+ - one or more digit

\. - literal dot. Dot has a special meaning in Regular Expressions (any character), and to use it
literally it must be escaped with \ (backslash).

However, the backslash in the regular expression must be escaped once more when used in
JSON file, so that it is not interpreted as escape JSON sequence. The following JSON would be
valid:

"sql": "[columnName] REGEXP '^[a-zA-Z]+\\.[0-9]+$'"

84ETL Implementation Guide12.5

Additional Information
Visit w w w .ra ynet.de for further information on ETL, and take a look at the additional resources
available at the Knowledge Base: http://raynetgmbh.zendesk.com/.

Raynet is looking forward to receiving your feedback from your ETL experience. Please contact
your Raynet service partner or use our Support Panel to add your ideas or requirements to the
ETL development roadmap!

http://www.raymanagesoft.com
http://raynetgmbh.zendesk.com/
https://raynetgmbh.zendesk.com
https://raynetgmbh.zendesk.com

85ETL Implementation Guide12.5

ETL
is part of the
RaySuite

More information online
www.raynet.de

	Contents
	1 Introduction
	2 Basic concepts
	2.1 Technical implementation
	2.2 ETL and Data Hub

	3 Tutorial and implementation guide
	3.1 Prerequisites
	3.2 Starting the examples
	3.2.1 Debug and troubleshoot

	3.3 JSON format
	3.4 Mapping and selecting
	3.4.1 Single column
	3.4.2 Multiple columns
	3.4.2.1 Defining aggregations

	3.4.3 Fixed value
	3.4.4 Auto value
	3.4.5 Transformed value
	3.4.6 Regular expression match
	3.4.7 Switch-case statement
	3.4.8 Custom SQL statement
	3.4.9 Advanced topics
	3.4.9.1 Fallback columns
	3.4.9.2 Union mapping
	3.4.9.3 Arbitrary column types
	3.4.9.4 Inferring remaining columns

	3.5 Filtering
	3.5.1 Logical operators
	3.5.2 Comparison and other operators
	3.5.3 Custom filtering

	3.6 Grouping and deduplicating
	3.7 Joining
	3.7.1 Cell merging
	3.7.2 Overriding cell merging strategy
	3.7.3 Order of joining
	3.7.4 Tables priority
	3.7.5 Wildcard joining
	3.7.6 Column selection

	3.8 Advanced deduplicating
	3.8.1 Using MaxValue and MinValue strategy

	3.9 Splitting
	3.10 Enriching
	3.10.1 Look-up values
	3.10.2 Split look-up
	3.10.3 Look-up keys
	3.10.4 Fallback
	3.10.5 Consolidating look-up targets

	3.11 Chaining steps
	3.12 Optional and required tables
	3.13 Programmability
	3.13.1 SQL environment
	3.13.1.1 Creating reusable scripts
	3.13.1.2 Extra functions

	4 Additional Information

