
User Guide RayQC 6.2

3User Guide RayQC 6.2

<%HEADING1%>

Copyright © Raynet GmbH (Germany, Paderborn HRB 3524). All rights reserved.
Complete or partial reproduction, adaptation, or translation without prior written permission
is prohibited.

RayQC 6.2 User Guide RayQC

Raynet and RayFlow are trademarks or registered trademarks of Raynet GmbH protected by
patents in European Union, USA and Australia, other patents pending. Other company names and
product names are trademarks of their respective owners and are used to their credit.

The content of this document is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Raynet GmbH. Raynet GmbH assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document. All names
and data used in examples are fictitious unless otherwise noted.

Any type of software or data file can be packaged for software management using packaging tools
from Raynet or those publicly purchasable in the market. The resulting package is referred to as a
Raynet package. Copyright for any third party software and/or data described in a Raynet package
remains the property of the relevant software vendor and/or developer. Raynet GmbH does not
accept any liability arising from the distribution and/or use of third party software and/or data
described in Raynet packages. Please refer to your Raynet license agreement for complete
warranty and liability information.

Raynet GmbH Germany
See our website for locations.

www.raynet.de

22.11.2019

http://www.raynet.de

4User Guide RayQC 6.2

Appendices

Contents
... 7Introduction

... 7RayQC Features at a Glance

... 9RayQC is a part of RaySuite

... 10Development Roadmap

... 10Additional Resources

... 11System Requirements

... 11Hardware Requirements

... 11Supported OS

... 12Prerequisite Software

... 14Migration

... 19Installing RayQC

... 28Product Activation

.. 28License wizard

.. 34Order number

.. 38License file

.. 40Floating license server

.. 41I do not have a license or order number

.. 41I want to take my activation back

... 43Working with RayQC

... 47Objects

... 52Typical Workflows

... 54The Home Screen

... 57The Checklist Viewer

... 64The Checklist Editor

... 67Shortcuts

... 68Communication with RayFlow

.. 68From RayFlow to RayQC

.. 71From RayFlow to RayQC and back

... 74The RayQC Command Line Interface

... 77The FILE menu

... 80Settings

... 83Interface

... 85Behavior

... 86Signing

... 92Plug-Ins

... 96Report profiles

... 103RayFlow

5User Guide RayQC 6.2

Settings

... 104Virtual Machines

.. 107Snapshot Selector

.. 108Preparing Virtual Machines

... 111Advanced Configuration Options

... 115About

... 115Get Started

... 118License and Edition

... 121Troubleshooting

... 124Checklist Structures

... 124Basic Checklist Properties

.. 125Steps and Actions

.. 128Groups

.. 133Elements

.. 135Element Types

.. 140Element Options

.. 153Element Controls

.. 162Properties

.. 165Supporting Files

.. 169Plug-Ins

.. 171Post Processing

... 174Checklists on the File System

... 174Formatting Markup Options

... 177Standard Checklist Procedures

... 177Create Checklist Templates

... 178Evaluate Checklist Projects

... 179Create Checklist Evaluation Reports

... 181Edit Checklist Templates

... 182Delete Checklists

... 184Plug-Ins

... 184Plug-In Types

... 185Using Plug-Ins in Checklists

.. 187Configuration during Checklist Creation

.. 190Execution during Checklist Evaluation

... 195Internal Plug-Ins

.. 196Command Plug-In

.. 198File Plug-In

.. 205Folder Plug-In

.. 210IniFile Plug-In

.. 214Local System Plug-In

6User Guide RayQC 6.2

Plug-Ins

.. 217Logic Plug-In

.. 228Regular Expressions

.. 232MSI Plug-In

.. 237RayFlow Plug-In

.. 242Registry Plug-In

.. 247Advanced Plug-In

... 248External Plug-Ins

.. 249Structure of a Plug-In

.. 251The Manifest

.. 254The Plug-In Logic Script

.. 254Local and Global Plug-Ins

... 258Using Virtual Machines

... 262Working with RayFlow

... 262Introduction

... 262Signing-in to RayFlow

... 266Signing out from RayFlow

... 267Troubleshooting

... 267License Activation Tool is Shown at RayQC Launch

... 268Missing Item Numbers in a Checklist Group

... 268Missing Plug-Ins

... 271Logging RayQC Activity Fails

... 273Connections to Virtual Machines

... 275Additional information

... 275Help & Support

... 276Appendices

... 276Basic Checklist Structure

... 277Checklist Example

... 278Basic External Plug-In Structure

... 280External Plug-In Example

7User Guide RayQC 6.2

Introduction

Introduction
RayQC is a rule-based tool to create and execute proof-criteria in one or more checklists. It offers
various modules to check the quality of applications and software packages all along the
Application Lifecycle Management process and also allows you to integrate your own test
criteria. The execution of the various test phases is typically done via a combination of manual
(i.e. are there available and sufficient licenses for the application?) and automated tasks (i.e. are
the MSI properties set according to the packaging guidelines?).

More than the ease-of-use of the checklist viewers in RayQC, the rule-based interpretation of the
individual test results takes quality control to a new level. It is for example possible that the
overall quality control phase does not fail, even when one or more test criteria are set as “not
achieved”, thanks to predefined interpretation rules. All the control steps are also summarized in
a final quality report which is intended to be handed over to the next packaging process phase.

RayQC therefore meets the requirements for an enterprise level software packaging quality
control tool. With RayQC from Raynet, you can rapidly see a reduction in errors, and in the long-
term secure the quality of business processes, which in turn drastically relieves IT and Helpdesk
alike. Not to mention the significant positive influence on the incurring expenses for Application
Lifecycle TCO in general.

Tip:
Various online references are used throughout this document. Although an online
connection is not required for this help file, further reading and reference material is
available if you do have an internet connection for any of the external links present in
this document.

RayQC Features at a Glance
The core features of RayQC cover the following quality assurance requirements:

Standardization of the quality control process and tasks
Reduced quality control cycle times
Improved quality through results certified by RayQC
Ability to add or change rules according to requirements
Combination of manual and automated test phases
Flexible implementation of in-house test scripts in the checklist
Documentation of the results in the quality report
Integral part of RaySuite and fully integrated in RayFlow

8User Guide RayQC 6.2

Introduction

Standardization

Easy creation of XML-based checklists with the Checklist Editor.
Create your own test criteria for each individual quality control phase in the software
packaging lifecycle
Define how to proceed with each test result. Does a “failed” test lead to a rejected package? Or
does the tester simply need to document the reason for failure to move on to the next test
phase?
Export of the test results as HTML or DOCX files

Automation

Automating test routines („Runbook“) is available by the integration of standard or custom
plug-in functionality
Start tests directly from RayFlow and integrate the overall process management with RayFlow
Reporting to RayFlow may be configured to be an automated part of the overall QA workflow
procedures

9User Guide RayQC 6.2

Introduction

RayQC is a part of RaySuite

"Best-practice workflow" for Enterprise Application
Lifecycle Management

RaySuite offers product solutions for the creation, operation and control of individually
customized Enterprise Application Lifecycle Management projects in automatically
administered environments.

Designed as part of the RaySuite, Raynet's product suite for Enterprise Application Lifecycle
Management, RayQC is a packaging process related quality assurance tool. However, due to its
flexible design RayQC actually is a multi-purpose application for any kind of checklist-based
validation procedure. It may be used either way - standalone or as integrated part of RaySuite.

When RayQC is used as part of the RaySuite, it is connected to RayFlow, the workflow
management component of the RaySuite. In this case there are some additional features, such as
directly exporting checklist results to RayFlow, which will not be available in a standalone
instance of RayQC. Please refer to the RaySuite website for further information regarding the
benefits this product family offers for your daily business tasks.

https://raynet.de/Raynet-Products/RaySuite/

10User Guide RayQC 6.2

Introduction

Development Roadmap
Upcoming releases will introduce additional new components and features, resulting in boosted
productivity, time and resource savings and improvements regarding the product experience.
As the development of RayQC is customer oriented, please let us know if you have any ideas or
suggestions of how you see your ideal quality assurance and checklist execution tool. Our sales
team will be happy to help you, also make sure to check our website http://raynet.de to never
miss our next releases, announcements, special offers and product trainings.

Additional Resources
Further information regarding RayQC can be found in several resources.

The RayQC 6.2 Release Notes provide an overview about the changes and new features that are part of this
version of RayQC.

The RayQC 6.2 Installation Guide provides IT professionals with a guide on how to install RayQC for the first
time.

The RayQC 6.2 Operations Supplement provides information about third-party software packages and libraries
redistributed with RayQC.

The product website www.rayqc.de provides information about the product, news, and support.

Raynet and its partners offer a range of training courses that can also be customized to meet your
requirements. For more information on these courses, speak with your Raynet consultant or contact the
Raynet Sales department via sales@raynet.de.

http://raynet.de
mailto:sales@raynet.de

11User Guide RayQC 6.2

System Requirements

System Requirements
The given requirements name prerequisites for devices running the RayQC application.

Hardware Requirements

Minimal

CPU: Intel Core i5
Screen resolution: 1024 x 768 pixels
RAM: 4GB
Disk space: 10GB

Recommended

CPU: Intel Core i7
Screen resolution: 1280 x 1024 pixels
RAM: 16GB or higher
Disk space: 100GB or more

Note:
The installation of the RayQC framework itself requires about 70MB of disk space. The
amount of additional space required depends on the amount of packaging material and
the location of your data store.

Supported OS
The following represents the list of supported operating systems at the time of release.

Windows Vista SP2
Windows 7 SP1
Windows 8
Windows 8.1
Windows 10
Windows Server 2008 R2
Windows Server 2008 SP1
Windows Server 2012
Windows Server 2012 R2
Windows Server 2016
Windows Server 2019

12User Guide RayQC 6.2

System Requirements

Prerequisite Software
General

.NET 4.5 Client & Full for Windows Vista up to Windows 8 systems (both 32-bit and 64-bit).
Windows Management Framework (including Windows PowerShell 3.0, WinRM 2.0, and BITS
4.0).
Please verify if the named or later versions are available on your device before using internal or
external plug-ins in checklists.
For further details and download resources visit http://support.microsoft.com/en-us/
kb/968929.

Be aware:
In order to be able to use external plug-ins with RayQC, it has to be ensured that the PowerShell
version supported by the device that hosts the application matches the PowerShell version of the
actual plug-in script. It is highly recommended to synchronize the PowerShell version among all
devices that are assigned for QA execution to prevent compatibility issues in the first place.

RayFlow
In order to use RayFlow functionality directly from RayQC, a running RayFlow server has to be
accessible.

Hyper-V integration
RayQC requires that RayPack 6.2 is installed on the same machine in order to use Hyper-V
functions..
Both host and guest machine must have PowerShell 3.0 or newer installed.
Windows Remote Management
RayPack Studio Tools for Hyper-V need to be installed on the guest machine.

The tools can be installed from a Windows Installer package that is present in the RayQC
subfolder Tools\HyperVTools\Packaging Suite Tools for Hyper-V.msi.
The installation of the tools is required, so that the user can see interactive prompts and windows
on Hyper-V machines. It is recommended to install the tools as a part of the base snapshot.

V Mware Workstation / ESXi5.5 - 6.0
RayQC requires that RayPack 6.2 is installed on the same machine in order to use ESXi/
Workstation functions. RayQC supports the following products:

VMware vSphere 5.5-6.0
VMware Workstation 10 and newer
VMware Workstation 7, 8, 9 and for VMware vSphere 4.x, 5 and 5.1 are experimentally
supported.

To use any of VMware Workstation / ESX machines, one of the following must be installed in an
appropriate version:

VMware Workstation
VMware VIX API (https://my.vmware.com/web/vmware/details?
productId=26&downloadGroup=VIX-API-162)

http://support.microsoft.com/en-us/kb/968929
http://support.microsoft.com/en-us/kb/968929
https://my.vmware.com/web/vmware/details?productId=26&downloadGroup=VIX-API-162
https://my.vmware.com/web/vmware/details?productId=26&downloadGroup=VIX-API-162

13User Guide RayQC 6.2

System Requirements

vSphere

The required VIX API version depends on the systems that it needs to connect to. The below
table presents the supported versions of VMware products depending on the installed VIX API
version.

V IX API V ersion V Mware Platform Products Library Location

1.11 vSphere 5, Workstation 8 or earlier Workstation-8.0.0-and-vSphere-5.0.0

1.12 vSphere 5.1, Workstation 9 or earlier Workstation-9.0.0-and-vSphere-5.1.0

1.13 vSphere 5.5, Workstation 10 or earlier Workstation-10.0.0-and-vSphere-
5.5.0

1.14 Workstation 11 or earlier Workstation-11.0.0

1.15.0 Workstation 12 or earlier Workstation-12.0.0

ESXi 6.5 and newer
RayQC requires that RayPack 6.2 is installed on the same machine in order to use ESXi/
Workstation functions..

To make use of ESXi 6.5+ servers, the following prerequisites must be met:

PowerShell 3.0
PowerShell Execution Policy set to Unrestricted or RemoteSigned
PowerCLI installer (https://www.powershellgallery.com/packages/
VMware.PowerCLI/11.2.0.12483598)
VMware Tools installed on the VM
Guest operations and System permissions granted to the user executing the product.

Combination of supported versions is presented in the following table:

https://www.powershellgallery.com/packages/VMware.PowerCLI/11.2.0.12483598
https://www.powershellgallery.com/packages/VMware.PowerCLI/11.2.0.12483598

14User Guide RayQC 6.2

System Requirements

More information about PowerCLI:

https://pubs.vmware.com/vsphere-51/index.jsp?topic=%
2Fcom.vmware.powercli.cmdletref.doc%2FGet-VMGuest.html
https://pubs.vmware.com/vsphere-51/topic/com.vmware.powercli.cmdletref.doc/Invoke-
VMScript.html
https://pubs.vmware.com/vsphere-50/index.jsp?topic=%2Fcom.vmware.wssdk.pg.doc_50%
2FPG_ChD_Privileges_Reference.22.3.html

Migration

Upgrading the RayQC Application

https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.powercli.cmdletref.doc%2FGet-VMGuest.html
https://pubs.vmware.com/vsphere-51/index.jsp?topic=%2Fcom.vmware.powercli.cmdletref.doc%2FGet-VMGuest.html
https://pubs.vmware.com/vsphere-51/topic/com.vmware.powercli.cmdletref.doc/Invoke-VMScript.html
https://pubs.vmware.com/vsphere-51/topic/com.vmware.powercli.cmdletref.doc/Invoke-VMScript.html
https://pubs.vmware.com/vsphere-50/index.jsp?topic=%2Fcom.vmware.wssdk.pg.doc_50%2FPG_ChD_Privileges_Reference.22.3.html
https://pubs.vmware.com/vsphere-50/index.jsp?topic=%2Fcom.vmware.wssdk.pg.doc_50%2FPG_ChD_Privileges_Reference.22.3.html

15User Guide RayQC 6.2

System Requirements

General upgrade preparations

RayQC 6.2 is delivered as an MSI software package. In order to install it safely:

1. Download the MSI package for RayQC 6.2 from the Raynet resource repositories.
(If you have not already received credentials, please contact the Raynet support team via our
Support Panel).

2. Copy all files that need to be kept for later reuse or look-up (such as resources of global
external plug-ins, log, settings and config files, the *.license file, etc.) to a temporary transfer
directory outside the RayQC application directory (where they usually reside).

3. Make a backup of your SQL Server database which is used by RayQC Advanced Module.

4. Execute the RayQC 6.2 MSI package and work yourself through the setup routine. The
installation of RayQC 6.2 is described in the RayQC 6.2 Installation Guide.

Note:
If upgrading RayQC Advanced, ensure that a running SQL server is available before
starting the migration/installation.

If an older version then RayQC 2.1 is installed on the
target machine

If an older version then RayQC 2.1 is already installed on the target machine there are two
different ways to migrate to the new RayQC 6.2.

Install RayQC 6.2 and keep the installation of RayQC 1.5 or RayQC 2.0. They will remain
untouched by the installation of RayQC 6.2.

General upgrade preparations

RayQC 2.1 is delivered as an MSI software package. In order to install it safely:

1. Download the MSI package for RayQC 2.1 from the Raynet resource repositories.
(If you have not already received credentials, please contact the Raynet support team via our
Support Panel).

2. Copy all files that need to be kept for later reuse or look-up (such as resources of global
external plug-ins, log, settings and config files, the *.license file, etc.) to a temporary transfer
directory outside the RayQC application directory (where they usually reside).

3. Remove the old RayQC installation manually.

https://raynetgmbh.zendesk.com
https://raynetgmbh.zendesk.com

16User Guide RayQC 6.2

System Requirements

4. Execute the RayQC 6.2 MSI package and work yourself through the setup routine. The
installation of RayQC 6.2 is described in the RayQC 6.2 Installation Guide.

Adjusting the newly installed RayQC instance

1. Launch RayQC.

2. Define config files and settings according to the old system state.

3. Test the new settings and configurations by creating and evaluating checklists,
communicating with RayFlow, reviewing log files, etc.

4. If there are issues regarding broken or missing functionality, please feel free to contact the
Raynet support team via our Support Panel.

RayUpdater

During the migration, if database changes are necessary, these will be done automatically. While
executing the setup routine, RayUpdater, the tool used for a safe migration of the data, will be
launched automatically and perform all necessary steps without the necessity of any user input.

Upgrading RayQC Files

The file formats RQCT and RQCP Raynet introduced in RayQC 1.5 and have been massively
reworked to match the needs of the modernized application logic. Therefore, it is not possible to
simply re-use templates and projects that have been generated with RayQC 1.5 in the current
version 6.2.

The RQCT files used in RayQC 6.2 are no longer XML structures, but ZIP containers that contain
the XML checklist file (checklist.xml) as well as all other resources required to run the checklist
on RayQC: plug-ins, help files, images, etc. are stored within dedicated directories wrapped in
the ZIP container.

Additional files that represent the current project status of a checklist evaluation (state.xml),
post-processing settings and signature information, are added when a template is saved as
project file RQCP.

Knowing about these changes makes it quite obvious that there must be some manual steps in
any kind of checklist transition from version 1.5 to 6.2. Once this is done, the following standard
procedure is a valid option for their transition to 6.2:

To transfer a RayQC 1.5 RQCT to the current 6.2 format, users have to run the following
procedure:
1. Copy the original RQCT file to a temporary working directory.

2. Change the file
a. name to checklist

https://raynetgmbh.zendesk.com

17User Guide RayQC 6.2

System Requirements

b. extension from .rqct to .xml

3. Create a new ZIP that contains the checklist.xml file. Name the ZIP container according to the
old checklist file name, and set the file extension to RQCT.

4. The result of steps 1-4 has to be a zip container with the file extension *.rqct, that contains a
checklist.xml file with the original checklist structure.

5. Open this file in RayQC 6.2.

6. It is most likely, that the validation procedure run during checklist loading states issues with
the XML source structure. In this case, a dialog is displayed, revealing details about invalid
areas with a click on the more button.

Open the checklist.xml file from within the RQCT container, and correct all mentioned issues
to establish an XML file that is valid according to the ChecklistSchema.xsd demanded by
RayQC 6.2.

7. Save the changes to the checklist.xml file, and re-try to open the RQCT container with RayQC.

8. Repeat steps 6 & 7 until the checklist is successfully validated and opened by the application.

Once this level is achieved, all upcoming changes may be executed directly within the
checklist editor. Please refer to the User Guide section about editing checklist templates for
further instructions.

Be aware:
Checklists with extended plug-in and condition usage may be quite difficult to upgrade
manually, since both parts of the system logic have undergone revolutionary changes
during the development of RayQC 6.2. Therefore, these checklists are recommended to
be recreated from scratch.
Also be aware:
There is no direct upgrade path for RayQC projects from product versions prior to 1.5.

Please contact your RayQC service consultant, or the Raynet support team to
get information about possible forms of assistance for any required upgrading
measures.

mailto:support@raynet.de

18User Guide RayQC 6.2

System Requirements

19User Guide RayQC 6.2

Installing RayQC

Installing RayQC
The RayQC installation resources come along as a MSI file with additional documents, such as the
current Release Notes and a User Guide. Usually, these documents are delivered via FTP server as
provided by our support which you can contact via our Support Panel.

Before the application is installed on a device some preparations are needed:

1. Please make sure, that you have your order number or license file at hand. Either one will be
provided by your Raynet sales representative or our support team which you can contact via
our Support Panel.

2. The target system needs to meet the system requirements described within the System
Requirem ents chapter.

3. A Windows User with sufficient rights for installations has to be logged in

4. Close all dispensable applications during the setup routine execution.

Installing RayQC

Launch the RayQC setup with a double-click on the MSI file and wait for the Welcome Screen to
be prepared.

https://raynetgmbh.zendesk.com
https://raynetgmbh.zendesk.com

20User Guide RayQC 6.2

Installing RayQC

Click on the Next > button to proceed with the installation.

The End User License Agreement dialog appears. In order to install RayQC, the End User

21User Guide RayQC 6.2

Installing RayQC

License Agreement has to be accepted. To proceed, read the End User License Agreement,
select the I accept the license agreement option, and click on the Next > button.

Choose the destination folder by either keeping the suggested default or by clicking on the
Change... button to select another target directory.

22User Guide RayQC 6.2

Installing RayQC

If a custom destination folder has to be defined, use the icons in the dialog above to navigate to
the desired installation directory or to create a new one. After this, click on the OK button to
return to the Destination Folder dialog. The path will be updated to display the custom
destination recently selected. Click the Next > button in the Destination Folder dialog to
proceed.

23User Guide RayQC 6.2

Installing RayQC

The RayFlow access for this product needs to be configured. If the Configure RayFlow access
for this product checkbox is checked, the RayFlow server can be configured. The full address of
the RayFlow instance that is about to be used for RayQC needs to be entered in the text field. If
the Configure RayFlow access for this product checkbox is left unchecked, RayFlow access
can still be configured in the Settings page of RayQC after the installation has been successfully
completed.

Click the Next > button in the RayFlow Server dialog to proceed.

24User Guide RayQC 6.2

Installing RayQC

The License Type screen provides options to either activate the RayQC instance via order
number and online activation service, by using an already prepared file (*.license), or to skip
activation for now. If the activation is skipped, it will need to be performed later when RayQC is
launched. For more information on product activation at the first launch of RayQC read this
section.

To use an already existing license file, which most likely has been provided by the Raynet
support team, the Browse... button has to be clicked. Use the controls of the system browser
dialog to navigate to the *.license file and select it with a click on the Open button.

Click the Next > button to proceed.

If activation by order number has been selected during the previous step, the Customer
Information screen is displayed:

25User Guide RayQC 6.2

Installing RayQC

Please enter your individual RayQC Order number and provide user information, such as E-Mail,
user name, and company name. The information will be used to verify the order number during
the upcoming execution procedure.

Click the Next > button to proceed.

26User Guide RayQC 6.2

Installing RayQC

All required settings and properties are now defined and RayQC is ready to be installed. Click on
the Install button to start the process.

A progress indication dialog is displayed as long as the installation steps are executed.

27User Guide RayQC 6.2

Installing RayQC

As soon as all required measures are done, the Install Completed dialog is presented.

Check the Launch RayQC checkbox to launch the application after the setup has been finished.

28User Guide RayQC 6.2

Installing RayQC

If the Open Release Notes Checkbox is checked, the Relea se Notes will be opened after the
setup has been finished.

Click the Finish button to exit the setup.

Product Activation
The product can be activated using one of the following methods:

Directly within the installation (see the Insta lla tion Guide)
o By supplying the order number
o By supplying an already generated license file (.rsl format)
When the product is started for the first time.

If RayQC detects that no valid license is present on start-up, the license activation wizard will be
shown after starting the main executable. The tool can be also started manually, by executing
Raynet.LicenseActivation.exe from the main installation folder.

License wizard
This section describes the usage of the licensing wizard.

On the initial start of RayQC, the licensing wizard is shown. If the need to transfer an existing
license arises, the license wizard can be started manually. There are a variety of ways in which a
license can be activated and below they are described in detail.

29User Guide RayQC 6.2

Installing RayQC

First time activation

30User Guide RayQC 6.2

Installing RayQC

The main screen when the product has been already
activated

Activate your product now
This option should be used to activate the product using one of the following methods:

31User Guide RayQC 6.2

Installing RayQC

Order number
Online activation using a valid order number received from Raynet (recommended for most
users)

License file
Offline activation using a license file (.rsl) received from Raynet

Floating license server

32User Guide RayQC 6.2

Installing RayQC

Activation using a local floating license server.

See details of the current activation
This options shows the details of the current activation. This option is only visible if the product
has already been activated or if a floating license server has been configured
This option also allows to reactivate the product using a different order number or a different
floating license server connection details.

I don't have a license or order number
Choose this option if there is neither a license nor an order number available. For in-depth
information please read this section. This option is only visible if the product has not been
activated yet.

I want to take my activation back...
Use this option to deactivate a currently licensed version of RayQC. For in-depth information
please read this section. This options is only visible if the product has been already activated.

Once the license file has been generated or copied to the correct location the following will be
shown...

33User Guide RayQC 6.2

Installing RayQC

Note:
Depending on the license, more available products may be shown, as pictured above.

Then the option of starting RayQC or just closing the activation wizard is made available.

34User Guide RayQC 6.2

Installing RayQC

Troubleshooting

If any issues arise during the activation process, please contact our help desk to receive
assistance in activating RayQC.

Order number
RayQC can be activated either directly online or via email once the order number has been
delivered. The activation process generates a license file (*.rsl) that is created (or must be
copied) to the installation directory of RayQC (in the same location as the RayQC.exe). When
performing an online activation, sufficient permissions must be readily available to allow the
creation of the license file in the installation directory. The activation binds the license to the
machine on which it was activated on. This is the only time that an active connection to the
internet is required (if activating online).

Choosing the ACTIV ATE NOW button, connects to the Raynet license server using the
information provided and will dynamically generate a license file. Choosing the ACTIV ATE
MANUALLY button will open a dialog as shown here. Choosing the CANCEL button will abort
the activation process.

http://support.raynet.de

35User Guide RayQC 6.2

Installing RayQC

Order details

Order number:
This is the unique order number received when RayQC has been purchased. If it is necessary to
recover the order number, please contact our sales team.

User name:
This is the name of the user that is activating RayQC. It does not need to be the same name used
to order RayQC.

Company:
This is the name of the company for which RayQC will be licensed. This name will appear in the
License and Edition view of RayQC.

E-mail address:
This is the email address of the person that performs the activation. We respect the privacy of
our customers, this email address will only be used by Raynet and only when there are any
problems or important information regarding the license.

mailto:sales@raynet.de

36User Guide RayQC 6.2

Installing RayQC

Advanced options

On choosing the advanced options check box, extended information and possibilities of the
licensing and activation of RayQC are shown.

Hardware ID:
This is a ID calculated based on the hardware on which the activation is taking place on. The ID is
unique, but cannot be used to personally identify a user. It is used to generate the license for the
machine on which the activation process is carried out on.

Transfer the license
If this option is selected, the order number and details may be used to activate RayQC on a
second machine, that has differing hardware (which obviously has a different Hardware ID). This
assumes that RayQC has been deinstalledfrom the machine on which it was previously activated
on. The transfer license functionality is logged on our license servers and is periodically checked
to ensure that no abuse is made of this functionality.

If the license transfer is part of a regular maintenance and can therefore be prepared and
scheduled, it is highly recommended to use the deactivation function first, to disconnect license
and packaging machine. This is the standard way for transferring licenses. The option offered
here is intended for unscheduled transfers, required if a machine, for whatever reason, cannot be
accessed or used operational any longer.

37User Guide RayQC 6.2

Installing RayQC

Manual Activation

On choosing the manual activation, the dialog shown below is displayed.

This basically shows the contents of the ticket form that will be opened at Raynet. If there is an
internet connection available on the machine, click on the GO TO URL button to open the URL
shown in the top of the window in the default browser of the system. After a File Order has been
opened in the Raynet Support Panel, a license file will be delivered. Information of how to use
this file are available here.

If no internet connection is present on the machine on which the activation process is taking
place, copy the contents of the dialog onto a machine which has an internet connection and use
the URL on that machine. On receiving the ticket, a license file will be generated and sent back.
Information on how to use the license file can be found here.

Tip:
Please ensure that when copying the information from the MANUAL ACTIV ATION
dialog everything is added as shown above.

Once the license file has been generated the following will be shown:

38User Guide RayQC 6.2

Installing RayQC

Note:
Depending on the license, more available products may be shown. As an example, see
the image above.

The option of starting RayQC or just closing the activation wizard are available now.

Troubleshooting

If there are any problems during the activation process, please contact our help desk for
receiving assistance in activating RayQC.

License file
If a license is already available, or a license file has been received as a result of activating RayQC
via e-mail, then all that is required is to copy the license file into the installation directory of
RayQC (the directory in which the RayPack.exe resides). Clicking on the I have a license button

http://support.raynet.de

39User Guide RayQC 6.2

Installing RayQC

on the License wizard dialog opens a dialog box which allows to choose the license file. Once
chosen, the file will be copied automatically to the RayQC installation directory. Please ensure
that sufficient permissions to allow the creation/copying of a file to the installation directory of
RayQC are available.

Once the license file has been copied to the correct location the following will be shown:

40User Guide RayQC 6.2

Installing RayQC

Note:
Depending on the license, more available products may be shown. As an example, see
the image above.

The option of starting RayQC or just closing the activation wizard are available now.

Troubleshooting

If there are any problems during the activation process, please contact our help desk for
receiving assistance in activating RayQC.

Floating license server
RayQC can be activated using a local floating license server. This requires that the server
component is installed (the installation is available separately from the product installer).

Once the server is configured, the following details are required from the server administrator:

Server name or IP address
Configured port (by default 26627)

http://support.raynet.de

41User Guide RayQC 6.2

Installing RayQC

Enter required values and confirm them by clicking on the SAV E button. The server will be
contacted once to verify the correctness of the data. If the server is not available at that time, an
option will be presented to write the data anyway.

Once the connection details are saved, please restart the product to activate it using the floating
license server.

I do not have a license or order number
If neither a license or order number is available, then just simply register with Raynet to
download an evaluation license for RayQC. This allows potential customers to test and work with
RayQC before purchasing. Choosing I don't have a license or order number opens the Raynet
website in the default browser, allowing potential customers to download an evaluation copy of
RayQC.

I want to take my activation back
Deactivating an existing license for RayQC may be required if the packaging machine used has to
be switched. Whenever there is a scheduled migration, e. g. when a virtual machine is
transferred in a way that affects the Hardware ID, or when a physical machine is no longer used
for packaging purposes, deactivating the license is the right thing to do.

To deactivate a licensed RayQC installation

42User Guide RayQC 6.2

Installing RayQC

1. Launch RayQC and open the license and edition tab of the about area.

2. Click on the Open the license wizard button on the lower left hand side of the application
window.

3. Use the option I want to take my activation back...

4. Enter the order number that was originally used to activate RayQC on the current machine. It
was part of the resources and information material delivered during product purchase.

5. If required, adjust the user name already entered into the input field User name. The users
who activate and deactivate an installation do not necessarily have to be the same.

6. Click on DEACTIV ATE NOW.

The license wizard will connect to the Raynet licensing server and send the deactivation
information. On success, the number of licenses available for activation, which are bound to
the used order number, is incremented by one. With this new free license it is possible to
activate any RayQC installation, on the current machine or any other.

Troubleshooting

If any problems during this process occur, please contact our help desk for receiving assistance
in deactivating RayQC.

http://support.raynet.de

43User Guide RayQC 6.2

Working with RayQC

Working with RayQC
Once RayQC is installed on a machine, launching the program executable from the application
installation directory (e. g., C:\Program Files (x86)\RayQC\RayQC.exe) invokes the RayQC home
screen. If you have been working with any other RaySuite application before, the Home screen
layout should be quite familiar, since it is a common interface type for all products of this family.

When RayQC is invoked as a tool via RayFlow, it usually does not load the home screen, but
directly opens a checklist template or project file.

Once RayQC is up and running, the application screen contains some basic areas, which are
always available - even though the actual content of the area varies from view to view:

44User Guide RayQC 6.2

Working with RayQC

The Main Toolbar

Throughout RayQC, the Main Toolbar is visible, which, dependent on the contents of the view
shown adds or removes menu items dynamically. As a rule of thumb the items shown below are
always present on the Main Toolbar.

Click on the items to see more information about the individual topics.

FILE
This opens the FILE menu. The FILE menu is dynamically created, dependent on what Tool is
currently active. Please refer to FILE m enu section to read more about it.

Back
This opens the previous screen.

Home
Choosing this button will return you to the Home Screen. If any projects and or files are opened,
and there is a requirement to save any changes, you will be prompted to save before returning
to the Home Screen.

Save
Saves the current file / project. This button is only active if any changes have been made that
require saving.

V iew history
With a left-click on the arrow button, users navigate one step back within the history of recently
opened views. Right-clicking the arrow displays the recently visited views, and allows returning
to a specific view from that list.
This view history is limited to those views without project relation, or with relation to the
currently opened project. Thus, returning back to a view is not possible if it was called for a
project that is no longer opened.

V iew title
The view title specifies which content is currently shown as part of the active application context
and module.

Window title
The window title displays the current scope of activity. If an editor is active, the file name of the
currently opened project is part of the window title as well.

RayFlowStatus
This window tile displays the status of the RayFlow connection. It is either black showing RayFlow

45User Guide RayQC 6.2

Working with RayQC

or red and showing the currently logged in user. By clicking on this tile a user can either log in or
out.

Standard window controls
The standard window controls allow minimizing, maximizing, resizing and closing the
application window. The availability of each control follows the Windows schema for standard
controls as known from any desktop application.

Application Context
The illustrations above show the main application context status, which is RayQC. Depending on
the set of licensed modules and add-ons, further contexts may be added.

46User Guide RayQC 6.2

Working with RayQC

SETTINGS
Opens the settings for RayQC.

ABOUT
Contains information about the currently active product instance.

HELP
Opens this help file.

The content area

The content area is the core for actual application activity. According to the active application
context, it contains the dashboard (as shown in the screenshot at the beginning of this topic), the
checklist viewer or editor, dialogs for settings editing, and so on.

The content area of the settings view signing. The other views of the settings area are available
by clicking on their tab labels: behavior, connections, plugins and report profiles

47User Guide RayQC 6.2

Working with RayQC

The swipe bars

Whilst the Main Toolbar is designed to provide access to general application functionality, there
are additional swipe bars for local activity options at the bottom of some views. This may either
be a set of buttons for running checklist evaluations, options for saving or discarding settings, or
navigation helpers that allow switching between related views, such as between the checklist
viewer and editor.

What's next?

Now that the main areas of the RayQC user interface have been introduced, it is time to do the
same with the different types of objects that may be handled within the product. Please go
ahead and read the following section Objects for details regarding the differences between
Checklists, Templates, and Projects used within RayQC.

Objects
Since RayQC is a checklist based application for quality assurance related test executions, it may
actually not be overly surprising to find an object called "RayQC checklist". However, recognizing
the differences between checklists and templates, or checklists and projects may be a bit tricky
without further explanation. Therefore, here is a brief outline of the objects and their related file
name extensions in RayQC.

RayQC Checklist and RayQC Template (*.rqct)

The file types checklist and template exist due to historical reasons. In fact, both names refer to
the very same object type RQCT, which is the abbreviation for RayQC Template. The idea is that
when a new checklist is created, RayQC uses a default template to generate the basic checklist
structure. As long as the checklist has not been executed within RayQC, it is nothing more than a
manipulated version based on the original template file. Therefore, when the labels checklist
and template are used within the RayQC user interface or documentation, both actually intend to
refer to the very same type of file.

The RQCT files used in RayQC 6.2 are ZIP containers that contain the XML checklist file
(checklist.xml) as well as all other resources required to run the checklist in RayQC: plug-ins,
help files, images, etc. are stored within dedicated directories wrapped in the zip container.

48User Guide RayQC 6.2

Working with RayQC

Checklist group

A group is a logical bundle of elements within a checklist. The elements of a specific group are
handled as a unit, and thus will be displayed in a shared container area when a checklist
(template or project) is opened within RayQC. Each group has its own header (including index
number, title, and description) and content section (including the groups checklist elements).

Checklist element

An element is a single item within a checklist group. There are four basic types of elements that
may be used within checklists: Information, Data Field, Checkpoint, and Multi-Option. The type
of element determines the input and result options users face when they actually run a checklist
instance (which in fact is called a project, see below). Further details about the specifications of
the element types are provided within the Element types chapter later on.

Be aware:
Former releases use different names for the checklist element types. In order to avoid
misunderstandings and provide clear names, a change according to this mapping has
been done:

Comment > Information
User Comment > Data Field
Checkpoint Entry > Checkpoint
Multi-Option Entry > Multi-Option

RayQC Project (*.rqcp)

A RayQC project file (abbreviated by RQCP) is a ZIP container, just like RQCTs. In addition to the
checklist resources it is extended with the current execution status for this specific checklist
instance. Therefore, when a checklist file is opened in RayQC, it is automatically converted into a
temporary project file that resides within the session memory. Saving changes made to a
checklist automatically preselects the project data type RQCP as its file extension. Only when
users manually change the default selection to RayQC Template (*.rqct), the original checklist
file is physically overwritten.

In order to decide which target format is desired, users have to be sure about what exactly they
want to save: The status-free checklist itself, which may later be used as the source for several
new projects, or the current state of a specific checklist run, which has to be a project file.

Be aware:
To distinguish evaluation status and element structure information out of a project file,
users have to open the project file with a tool like WinZip or 7ZIP. Once opened this
way, the checklist status and structure are both directly available as XML files. However,
it is not recommended to manipulate the files somewhere outside of the RayQC
application scope, since the result will very likely not be in compliance with its schema

49User Guide RayQC 6.2

Working with RayQC

and value domain restrictions anymore.

plug-ins

Checklists may include different plug-ins, whilst each checklist element (see paragraph above)
may be equipped with a maximum of one plug-in. plug-ins enable automated checklist
execution, since they provide scripted logic that may be called by the RayQC plug-in interface.

50User Guide RayQC 6.2

Working with RayQC

Internal plug-ins

Internal plug-ins have been defined within the RayQC application and are ready for usage within
any kind of checklist. Users simply add the plug-in to an element, select the required control
options and parameter values, and the scripted logic is executed at checklist project run. Within
the current version of RayQC, there are nine Internal plug-ins available for out of the box usage:

Command plug-in
File plug-in
Folder plug-in
IniFile plug-in
Local System plug-in
Logic plug-in
MSI plug-in
RayFlow plug-in
Registry plug-in
Advanced plug-in

External plug-ins (PowerShell script and Manifest XML)

Whilst Internal plug-ins have been predefined for general usage within RayQC checklists by the
Raynet development team, External plug-ins may be created and integrated by RayQC users
themselves. They usually provide specific logic for a test criterion required by a single checklist,
or a whole checklist group. Depending on the test and assurance needs of each individual
customer, these External plug-ins are limited only by the experience the creator has in writing
PowerShell scripts, and the given restrictions of the work environment (e. g. access restrictions,
best practices, and the like).

Each External plug-in must consist of at least one PowerShell script file, containing the plug-in
logic, and an XML manifest file (Manifest.xml), declaring the plug-in interface for direct
interaction and communication with RayQC. These files have to be stored within the same
parent directory that is named according to the plug-in name. The type of supported PowerShell
scripts is not determined by RayQC itself, but the PowerShell interpreter on the machine the
plug-ins are executed on.

RayQC automatically checks the application installation directory (e. g., C:\Program Files (x86)
\RayQC\) for the existence of a \plug-ins\ directory. If it exists, the content is analyzed in order to
find plug-ins. These global external plug-ins may be used from within any checklist created
and executed from the machine that hosts the current RayQC instance.

Another type of external plug-in is the local external plug-in. These ones are basically of the
same structure (PowerShell script and manifest within the same folder which is named after the
plug-in name), but have to reside within the plug-ins directory that is part of the RQCT / RQCP ZIP
container. Therefore, local external plug-ins move with their parent checklists and projects, as
they are essential parts of them. They are more portable than global external plug-ins, which
reside on one specific QC device.

51User Guide RayQC 6.2

Working with RayQC

Please refer to the Plug-ins section of this document for details on how to actually use plug-ins
within checklists.

52User Guide RayQC 6.2

Working with RayQC

Note:
Please note that the possibility of using external PowerShell plug-ins within a checklist
is only available with RayQC Enterprise Edition.

Condition
Conditional statements are an important aspect of dynamic checklist evaluation. In RayQC, users
are able to define conditions, as combination of several conditional statements, which may
decide about the actual evaluation path of a checklist. For example: If the result of Checkpoint A
is true and the result of Multi-Option B is false, checklist group X has to be evaluated. If not,
checklist group X is invisible and does not affect the result of the checklist.

The logical idea of conditions in RayQC 6.2 is based upon the so called "disjunctive normal
form" (DNF), which allow building any kind of condition as a combination of ORs between ANDs.
To be more precise: A DNF is a disjunction of conjunctive clauses. Within our checklist editor,
clauses are called buckets. Within each bucket, there may be several conditional statements, but
all have to evaluate to true in order to let the bucket evaluation result become true. If the
condition for an element contains more than one of those buckets, it is sufficient to have one
bucket evaluate as true to let the whole condition evaluate as true. So you see, the buckets are
made up of ANDs, and are chained by ORs.

Please refer to the Conditions section of this document for details on how to actually use
conditions within checklists.

What's next?

Now that the most important objects within the RayQC universe are a bit more familiar, it is time
to see how they are used in productive work scenarios. Go ahead and get details about typical
workflows in RayQC.

Typical Workflows
Working with RayQC is basically divided into two main areas of activity: Preparing checklists and
executing them as projects. Therefore, the main workflows are bound to these core tasks:

Creating a new checklist
Editing a checklist
Running a checklist as project
Exporting evaluation result reports

In order to accomplish these workflows, some additional tasks have to be prepared in advance:

Define settings for RayQC usage
Define external plug-ins to use within checklists

53User Guide RayQC 6.2

Working with RayQC

Please click on the sections given above to get details on the specific workflow.

54User Guide RayQC 6.2

Working with RayQC

Be aware:
RayQC is available in different product editions. Please note that the license that has
been used to activate the current application instance takes direct effect on the set of
features which are effectively available. Therefore, some of the mentioned workflows
and activities may not be executable with the current RayQC installation. Please verify
the actual set of licensed features by reviewing the information provided within the
license and edition tab of the about view, or contact your Raynet sales or consulting
representative.

What's next?

Now that the most common activities and objects these are applied to are known, it is time to
take a look at the user interface that is present when projects or checklists are opened in RayQC.
As outlined before, the starting point of RayQC daily business is the Home screen with its
dashboard and recent list. Advanced RaySuite users may want to skip the in depth description of
the Home screen, and directly go ahead to read about the Checklist Viewer (for project
evaluation) and the Checklist Editor (for checklist design).

The Home Screen
The Home screen of RayQC contains a Dashboard and an optional Recent section for quick file
access. Whenever the application is launched without a specific file trigger, this view is the
starting point for the new RayQC session.

The contents of the Home screen may be configured via the Settings area: Users can decide
whether or not the Recent list is visible at the right-hand side of the Dashboard. The
screenshots below show the two operational modes: the first one without the Recent list, the
second one with the visible Recent list.

55User Guide RayQC 6.2

Working with RayQC

The Dashboard Tiles

Clicking any of the tiles on the Dashboard opens a specific RayQC view:

For first time users it is highly recommended to take a look at the Get Sta rted Guide, available
from the About tile.

56User Guide RayQC 6.2

Working with RayQC

After gaining overall knowledge of RayQC, a walk through the Settings section is due.
Especially for those RayQC instances, that have to operate connected to a RayFlow server.

With a properly set up configuration, the first checklist should be created, which requires
clicking on the Create checklist... tile.

Once a checklist is created, it may be opened for evaluation execution or structural editing.
Either way, the Open... tile allows to select a checklist template from the file system.

The Recent List

If configured to be visible, the Recent list is shown on the right-hand side of the Dashboard
content area. It lists recently accessed checklists and files of the currently logged in user.

The list contains the last 8 files that have been opened in RayQC by default. The ninth opening of
a file removes the oldest item from the recent list in order to add the new one. Clicking on a list
item immediately opens the related file in RayQC.

Be aware:
If the physical file that is connected to a recent list item has been removed or renamed,
it cannot be found and opened any more. Usually RayQC checks the availability of the
recent objects whenever the Home screen is loaded.
However, if an item becomes physically unavailable whilst the Home screen is active,
RayQC will display a message when the item is clicked, and ask the user if the file
should be removed from the recent list. It is recommended to do so.

The default behavior outlined above may be changed by pinning files to the Recent
list. At the left hand side of each recent list item, there is a pin icon. It is gray for
items that are not pinned to the list, and black for those who are currently pinned for
permanent visibility. Clicking the pin icon switches between the pinned and
unpinned status of an item.

Note:
Unpinning an item from the recent list may remove it from the visible list scope if it has
not been opened in RayQC for a while. The rule is that all pinned files are shown
ordered by last opening date, and the free slots of the list are filled with the lately
opened files, which are as well ordered by last opening time. Therefore, if a pinned file
has not been opened lately, it may very well be crowded out by other files.

57User Guide RayQC 6.2

Working with RayQC

The file icons used within the list indicate the specific file type by its color: template files are
represented by dark orange icons, projects have a lighter orange and a checkmark within their
icon.

Right-clicking an item present within the recent list reveals the context menu. Users have three
options to select from:

Remove from this list: Removes the checklist item from the recent list.
Show folder in Windows Explorer: Opens a new explorer window which shows the folder
containing the checklist.

The Checklist Viewer
The Checklist viewer is the user interface view that is active when a checklist is opened for
review / execution within RayQC. Therefore, to display the Checklist Viewer:

Use the open checklist tile from the Dashboard on the Home screen.
Click on one of the template items from the Recent list on the Home screen.
Use the Open view from the FILE menu and select the template file type.
Hit Control + O to browse the Windows system for a project file.

Be aware:
Whenever a file is opened in RayQC, it is checked for structural validity. Files that
contain not well formed source structures are rejected, and cannot be displayed within
the Checklist Viewer or Editor.
Especially when users try to open files, which have originally been saved in one of the
depreca ted Ra yQC file form a ts, they are rejected if they do not match the current
template or project file format restrictions.

Either way, the selected file (checklist or project) is opened within the Checklist Viewer. The
screenshot below shows this user interface state with one of the RayQC sample checklists
opened:

58User Guide RayQC 6.2

Working with RayQC

The application window is separated into different areas with specialized functionality and data
as requested for the optimal user interaction support. Please refer to the Working w ith Ra yQC
section for details regarding global interface objects and their usual naming in RayQC.

Main Toolbar

The menu bar has been extended with the actual checklist name of the currently viewed project
on the left-hand side.

Be aware:
Any checklist opened in the Checklist Viewer is automatically transformed into a RayQC
project, residing within the temporary system memory until it is saved permanently on
any system location. Leaving the Checklist Viewer without saving the changes made to
the actual checklist run / evaluation results, does not take any effect on the underlying
checklist. Saving the changes of the current checklist evaluation / run creates a RayQC
project file type by default. To manipulate the checklist structure underneath the
RayQC project has to be executed within the Checklist Editor view. Please refer to the
Checklist Editor section within this document to get more details on how to manipulate
checklist structures.

59User Guide RayQC 6.2

Working with RayQC

Content area

Checklist area

The actual content area begins with the listing of the checklist items in their group containers.
According to the order and nesting designed within the Checklist Editor, all items that do not
depend on conditional options are displayed with their type specific input controls. Users may
directly enter the results of their checklist execution, call help files for further information on the
checklist in general, or a specific checklist element. plug-ins can be executed and comments
may be entered. All in all, the checklist area is the place where the actual end-user evaluation
works with RayQC.

Checklist elements are equipped with an index value, which is unique within all items of the
same parent group container. The index does not only give information about the position of the
element within the item sequence of the box, but also about the indentation level of the item.
The index is a multi-level indicator value, with a colon separating the different tree levels. For
example: An item with the index value 2.3 is the third child of the second checklist item within a
group.

The elements within a group are displayed with alternating background colors in order to
support easy visual element distinction. Once Checkpoint elements have been evaluated, an
additional background color markup is applied to them: If it failed, the background turns slightly
orange, if it passed the background turns slightly green.

Please refer to the Checklist Structures section for details regarding the different options that may
be applied towards checklist design and functionality.

Task bar

The task bar below the checklist elements displays a set of status indicators, which support
users in their aim to completely evaluate the checklist elements with the least possible effort.
At the left-hand side, there are four status buttons, indicating the completeness of each
checklist element group:

Missing Entry Selections
Missing Multi-Option Selections
Empty Data Fields
Missing Failure Comments

A number greater than zero in the middle of the circle button indicates that the checklist
evaluation task is not complete yet, since there is at least one more user input or activity

60User Guide RayQC 6.2

Working with RayQC

required (See the right button presented within the illustration above). Whenever a task group is
incomplete, the circle button background is dark orange, whilst buttons for completed task
groups are shown with a light orange background color (See the left button presented within the
illustration above). The color coding is designed as a quick hint for missing information, whilst
the number indicates the amount of open tasks that need completion before the checklist
evaluation / run is complete.

Clicking on one of the task buttons with an orange background color focuses the first incomplete
checklist element according to the task group title. For example: The button for missing Multi-
Option selections is orange and displays a value of 3. Therefore, there are 3 checklist elements of
type Multi-Option that have not been answered yet. Clicking on the dark orange button scrolls
the checklist area to a scope that displays the first open Multi-Option element. As soon as the
user makes a selection for that element, the number of missing items displayed in the button is
decreased by one. Clicking the button again loads the next Multi-Option checklist element that
needs user interaction into the visible scope of the checklist area.

Since checklists may become comprehensive and complex for in-depth quality assurance
procedures, the task bar indicators are helpers for those situations where checklists may not be
fully evaluated within one working session. They also help to keep track on conditionally
displayed checklist elements. Therefore, it is recommended to use the task bar buttons after the
initial run through the entire checklist and complete the tasks with their guidance.

Another visual indicator within the task bar is the result ribbon at the right-hand side. When a
checklist is opened for execution as a project for the first time, the default ribbon state is a gray
background and the label NOT FINISHED.

Hovering over the ribbon reveals a summary of checklist properties, such as the number of
successful and failed checks, as well as the total number of currently available checklist
elements. This total is updated according to the actual state of element availability as derived
from conditional statement examination.

61User Guide RayQC 6.2

Working with RayQC

Once all checklist elements are evaluated, the result of the checklist run is available: The
checklist test has either been passed (indicated by a green background color and the label
PASSED for the ribbon), or failed (indicated by an orange background color and the label FAILED
for the ribbon).

Well, actually there are some more constellations and conditions that decide whether a checklist
has been passed or failed, but please read about them within the Checklist Structures chapter. For
now, it is just required to know that the ribbon at the right-hand side of the task bar actually
indicates the result of a checklist project evaluation.

Swipe bar

The swipe bar contains controls to use in combination with the currently opened resource file:

Edit this checklist

Clicking on this button opens the Checklist Editor, with the template of the currently visible
checklist already loaded for manipulation. As a handy alternative, use the swift Shift + Tab
shortcut to switch between the Viewer and Editor mode.

Validate plug-ins data

If the currently opened project contains plug-in calls, hitting this button checks whether they are
logically correct or not. Possible reasons for conflicts are:

Wrong input parameter values or formats
Invalid relations between elements and plug-ins (order of usage)

The result of the plug-in check is a message dialog, stating that all plug-in integrations are
flawless, or that issues have occurred. If there are issues, the message dialog may be expanded to
display details on the conflicts found within the plug-in definitions. In this case it is
recommended to change the mentioned plug-in parameters and recheck the checklist until all
issues have been cleared.

Validate conditions

If the currently opened project contains conditions, hitting this button checks whether they are
logically correct or not. Possible reasons for conflicts are:

A defined condition combination will never occur, e. g. because two or more condition terms
demand different results from the very same checklist item.

62User Guide RayQC 6.2

Working with RayQC

Condition terms are defined as duplicates, e. g. one term demands result A from checklist item
number 1, and the next term of the same conditional construction also demands result A from
checklist item number 1.

The result of the condition check is a message dialog, stating that all conditions are flawless, or
that issues have occurred. If there are issues, the message dialog may be expanded to display
details on the conflicts found within the conditional statements. In this case it is recommended
to change the mentioned condition terms and re-check the whole condition set of the checklist
until all issues have been cleared.

Run post process actions

This button can be enabled for a checklist via the Enable post process actions. checkbox. This
checkbox is available under the Post Processing tab of the checklist editor. Based on the
conditions defined under this tab, a set of predefined actions will be executed, either by clicking
upon this button or automatically when a user selects the Run All button. Furthermore, post
process action Create and upload report to RayFlow can also be initiated via the command
line switch.

For further information on configuration of post processing actions, please refer to the Post
Processing section of the chapter Checklist Structures.

Bypass

The bypass option is available if the checklist is configured to allow manual result bypassing. For
those projects that base on checklists with bypass permission, the bypass button becomes
available once the checklist elements have been fully evaluated and a result (PASSED or
FAILED) is displayed in the ribbon at the right-hand side of the task bar (see a bove).

Hitting the Bypass button displays the BYPASS dialog. Within this dialog, the user should write a
note why the bypass was required. Setting the result bypass state to Bypass (by clicking on the
radio control item option Bypass) reverts the original checklist project result (e. g. from original
result FAILED to the new, bypassed result PASSED).

Clicking the OK button within the BYPASS dialog saves the new result settings and closes the
BYPASS dialog.

63User Guide RayQC 6.2

Working with RayQC

It is possible to revert the bypass, which restores the original checklist evaluation result state
again. To do so, users call the BYPASS dialog and move the Invert result toggle slide to YES.
However, conditions regarding required circumstances for bypassing and bypass revocation
have to be defined by the creator of the original checklist template used within the current
project instance.

Run all

If a project contains checklist items with plug-in usage, hitting the Run All button automatically
executes all plug-ins at once. All plug-ins are run in turn, beginning from the one that has the
highest position within the checklist tree. The execution is done sequential, which means that
plug-in B will start when plug-in A has finished. Plug-in A and B will not be executed in parallel.
Therefore, plug-ins that require input based on earlier plug-in execution results will always rely
on current results when the Run All function is used.

64User Guide RayQC 6.2

Working with RayQC

If the Run All button is used after one or more plug-ins have been run (manually or
automatically), RayQC displays a dialog, asking the user if former results should be overridden by
the new execution, or if the Run All execution should be aborted instead.

Be aware:
On Run All, element's visibility will be evaluated after each plug-in execution in order
to process the checklist correctly. Only elements that require a manual input, will not
be processed and their condition will not be fulfilled by any plug-in.

Reset

Using the Reset button clears all checklist element results that are part of the respective
checklist in the Checklist Viewer. If a checklist has been opened in a project scope including a
former evaluation state, resetting does not reset to that state, but to the default initial state as
given from the checklist element definitions.

Be aware:
Reset does not reset the original checklist element settings of a checklist under
construction. It simply removes the result information entered within the Checklist
Viewer mode. Adjustments made towards the checklist elements within the Checklist
Editor are kept unchanged.

Virtual machines

By using the V irtual machines switch it is possible to execute parts or whole checklists on a
virtual machine.

Show / Hide swipe bar labels

As already described within the Working w ith Ra yQC section, the swipe bar comes in two display
modes: expanded and collapsed. The expanded mode displays a label for each button on the
swipe bar, whilst the collapsed mode contains only the buttons without the labels. Hitting the
button with the three vertical dots at the right-hand side of the swipe bar switches between the
expanded and collapsed swipe task bar display modes.

The Checklist Editor
The Checklist Editor is the RayQC interface for the manipulation of checklist structures and
settings. To display a checklist template within the Editor environment:

Use the open checklist tile from the Dashboard on the Home screen.
Click on one of the template items from the Recent list on the Home screen.
Use the Open view from the FILE menu and select the template file type.

65User Guide RayQC 6.2

Working with RayQC

Hit Control + Shift + O to browse the Windows system for a template file.

Either way, the selected file (checklist or project) is opened within the Checklist V iewer.
To switch to the Editor interface, use the EDIT button, available from the swipe bar at the
bottom of the application window area.

The screenshot below shows one of the RayQC checklist template examples ready for
manipulation within the Checklist Editor interface:

The application window is separated into different areas with specialized functionality and data
as required for optimal user interaction support. Please refer to the Working w ith Ra yQC section
for details regarding global interface objects and their usual naming in RayQC.

Main Toolbar

The menu bar has been extended with the actual view name of the editor on the left-hand side. It
also provides direct access to the FILE menu, with options to trigger standard procedures such as
saving the current checklist or creating a new one.

Toolbar

Collapse / Uncollapse All

Toggle all checklist groups between collapsed / expanded state.

66User Guide RayQC 6.2

Working with RayQC

Increase / Decrease indent

Increases / decreases indentation level of the current selection. the buttons are grayed out if the
action is invalid in the context of the currently selected item.

Searchbox

Start typing to perform a global search in the current checklist. When an item in the drop-down
is pressed, the checklist editor jumps to that element.

Content area

Checklist title

The title of the currently opened checklist may be edited by clicking the edit button next to
it. A direct value editor dialog is displayed, ready to type the new title. As an alternative, the

title can also be modified from the Properties tab of the checklist editor interface.

Checklist canvas

All other properties of a checklist are available for manipulation via the tabbed views contained
within the checklist canvas. Please refer to the Checklist Structures section for details regarding
the different options that may be applied towards checklist design and functionality.

67User Guide RayQC 6.2

Working with RayQC

Swipe bar

View this checklist

Clicking on this button opens the Checklist Viewer, with the project representation of the
currently visible checklist already loaded for testing and evaluation purposes. As a handy
alternative, use the swift Shift + Tab shortcut to switch between the V iewer and Editor mode.

Show / Hide swipe bar labels

As already described within the Working w ith Ra yQC section, the swipe bar comes in two display
modes: Expanded and collapsed. The expanded mode displays a label for each button on the
swipe bar, whilst the collapsed mode contains only the buttons without the labels. Hitting the
button with the three vertical dots at the right-hand side of the swipe bar switches between the
expanded and collapsed swipe bar display modes.

Shortcuts
RayQC offers a set of shortcuts for frequently used interface functionality. They are available from
both core user interface areas: Checklist Viewer and Checklist Editor.

Key combination Purpose

Control + N Create new checklist template

Control + O Open project

Control + Shift +
O

Open template

Control + S Save current project or template (overwriting existing version)

Control + Shift +
S

Save current project as (optional definition of new format, location, and
name)

Shift + Tab Switch between Checklist Viewer and Checklist Editor interface

Control + right
arrow key

Only from within the Checklist Editor interface: Increase the indentation of
a checklist element

Control + left
arrow key

Only from within the Checklist Editor interface: Decrease the indentation
of a checklist element

68User Guide RayQC 6.2

Working with RayQC

Communication with RayFlow
As outlined before, RayQC is an application that can either operate in a standalone mode, or it
can be integrated into the RaySuite. The core features of the RaySuite integration are direct
communication channels between the central RayFlow database and RayQC:

Communication from RayFlow to RayQC

Initiate RayQC checklist evaluation
Initiate automated RayQC report generation

Communication from RayQC to RayFlow

Authenticate to RayFlow
Get RayFlow package/connection information using RayFlow internal plug-ins
Update RayFlow package objects with values from a checklist project
Export RayQC report files to RayFlow database objects

Note:
Since this document is a RayQC related user guide, the following sections describe the
communication options from the RayQC point of view.

RayFlow is a workflow management system with a universal customization potential,
which means that each phase, each object property, each tool configuration, and many
other options are tailored towards the requirements of an enterprise packaging
environment. Therefore, references from this general document to RayFlow objects,
properties and settings will be given according to the standard configuration, whilst
most RayFlow instances will have similar, but not equal interface and procedure
designs.

Please contact your RaySuite administrator, or refer to the RayFlow or RaySuite
documentation for further information regarding required RaySuite / RayFlow system
configurations and customizations.

Additionally, please refer to the section about RayFlow settings provided within this
document to gain knowledge about required RayFlow server connection credential
handling.

From RayFlow to RayQC
The RayQC integration into RayFlow is solved as a tool utilization. Tools may be configured for any
RayFlow process phase, and are used to trigger external functionality which will be applied on
the package object from RayFlow. This RayQC tool integration is usually something that is
defined for the QA activity within the packaging phase, or user acceptance checks within the
UAT phase. RayFlow is absolutely free for additional tool integrations, but according to the Best
Practice EALM workflow Raynet suggests that those two phases benefit most from a direct RayQC

69User Guide RayQC 6.2

Working with RayQC

tool integration.

The upcoming procedure descriptions start from a RayFlow package data object. A user has to be
logged on to a RayFlow client and access the required workflow phase in order to successfully
trigger this kind of RayQC interaction. From the overview of packages that currently reside in the
workflow phase, the user has to right-click the package within the RayFlow user interface in
order to display the tools available for further processing of the package object.

70User Guide RayQC 6.2

Working with RayQC

Initiate RayQC checklist evaluation

From the list of available tools presented in the context menu, users have to pick "Evaluate with
RayQC" to actually initialize a RayQC session with fitting RayFlow connection and package object
reference parameter values.

Usually the tool trigger opens RayQC with a specific checklist template or project opened in the
Checklist Viewer mode, ready for immediate evaluation activity. The checklist is not transferred
from RayFlow to RayQC, but is known in RayFlow by its path. This path information is sent to
RayQC as part of the command executed when the RayQC tool call is done.

Be aware:
The checklist and all related resources have to be available for the user who launches
RayQC as a tool via RayFlow. The required access rights, and most likely network shares
as well, have to be prepared in advance and aligned between all applications and user
profiles that are active parts of the RaySuite system environment.

If there are checklist elements which have been configured to operate as RayFlow parameter
containers, they are already filled with the properties of the related data object when the
checklist is opened this way. The tool triggered RayQC session has automatically established a
connection to the RayFlow database, in order to retrieve object properties if required. The usual
identifier used for this data exchange is the unique package id property from RayFlow. It has to
be part of the command executed when the RayQC tool call is done.

These two steps are the core of the evaluation initialization via RayFlow: Opening a RayQC
instance with a data link to the RayFlow package object and a predefined checklist that is ready
for evaluation.

Initiate automated RayQC report generation

This method takes the procedure described above to another level of convenience, efficiency,
and result quality: When an automated report generation is triggered by a RayQC tool
integration, the procedure goes beyond opening a RayQC instance with a data link to the
RayFlow package object and a predefined checklist: it automatically runs all plug-in integrations
which are configured within the checklist template, generates a report file and sends it back to
the file repository of the package object within the RayFlow database.

However, there are some requirements regarding design limitations for automated checklists:

RayQC can only launch plug-ins in this automated scope if they do not require user interaction.

For example:
It is not possible to execute the FileOpenDialog function from the internal File plug-in,
because it needs manual response from a user: the selection of a file within the opened dialog
window.
RayQC is capable of recognizing these interactive functions for internal plug-ins. However, if a
custom plug-in requires user interaction, RayQC does not have enough information to
recognize this for auto-reports; and gives a warning when Run All is executed for a checklist

71User Guide RayQC 6.2

Working with RayQC

with non-leading interactive plug-ins. Therefore, it is part of the checklist author's
responsibility to prepare interaction free checklists for automated execution purposes.

When the checklist has been processed, RayQC creates a report, no matter if the list is finished
or not.
There may be checklist elements which require manual input (user interaction). These
element results will not be provided in the scope of an automated run. Therefore, a checklist
that contains such elements can never terminate as PASSED or FAILED.

During the data transfer phases between RayFlow and RayQC there has to be a stable
connection to the RayFlow webservice for data exchange. If this connection gets lost, the
process cannot be completed automatically and has to be finished manually.

Automated report generation procedures may only run on evaluation systems that are already
prepared for the test cases executed by the specific checklist. Since RayFlow simply launches
a local checklist and receives results as a report, there is no possibility to adjust local settings,
copy resources, or the like. These tasks have to be prepared in advance.

RayQC creates a local copy of the checklist report that has been generated for auto-upload.
Therefore, if the report file somehow gets damaged during the data transfer phase, the
information it contained is not lost, but retrievable from the %appdata% folder of the current
RayQC user on the local evaluation machine.

From RayFlow to RayQC and back
When a RayQC evaluation session has been initiated via RayFlow, it is possible to load RayFlow
package object data into dedicated elements of a checklist (see Initiate RayQC checklist
evaluation or Element Options > RayFlow parameter for details). This is the ingoing data
transmission path. Raynet always strives to establish both, efficient and consistent workflows.
Therefore, only receiving data from RayFlow is not enough. RayQC is also able to send data back
to RayFlow package objects and update the current property values according to the values
present within the checklist. If direct property updates are not desired, it may suffice to
automatically add checklist evaluation reports to the media repository of the package object in
RayFlow. Both options are available in RayQC as described in this section.

Update RayFlow package objects with values from a checklist project

Since all changes to RayFlow data objects are fully documented, workflow managers can freely
make use of this option without running the risk of losing control or auditing acceptability due to
untraceable phase transitions.

To actually use the Update RayFlow feature of RayQC, there are just a few preparations that need
to be done:

1. The list of required parameter names for property interchange between RayFlow and RayQC
needs to be communicated directly between the responsible persons for RayFlow
maintenance and RayQC checklist creation.

72User Guide RayQC 6.2

Working with RayQC

2. RayQC checklists must be prepared to handle RayFlow data object properties.

a. Within elements
To do so, elements have to be extended with functionality provided by the internal RayFlow
plug-in to get or set RayFlow parameters. As soon as a function of the RayFlow plug-in is
executed, data exchange is triggered. Either receiving data from or sending data / files to
the connected RayFlow server.

b. As part of the Post Processing tasks of the checklist
To do so, users have to define the RayFlow fields that will receive the update as well as the
conditions that need to be fulfilled to trigger the post processing. Post processing itself
needs to be activated for the Checklist as well.

3. The RayQC evaluation session has to be started by RayFlow, or a valid set of RayFlow
connection credentials has to be provided, along with the reference id of the RayFlow package
object that is the original data source from the RayFlow database. Actually, it is also possible
to establish connectivity manually, by using the connection settings and local values for the
package id, but the easiest and most seamless strategy is to trigger the direct communication
from RayFlow.

73User Guide RayQC 6.2

Working with RayQC

Export RayQC report files to RayFlow database objects

The direct report export to RayFlow is available for all RayQC checklist evaluation procedures
that have either been initiated directly from RayFlow or are operated on a system with an active
RayFlow server connection. As soon as a checklist is opened this way in either the Checklist
Viewer or the Checklist Editor, the Export to RayFlow option is visible and available from the FILE
menu. During RayQC sessions without active RayFlow data link, the option is grayed out and
cannot be used. To actually send a report from RayQC to RayFlow, users simply open the FILE
menu, click on the RayFlow option from the menu on the left side, and select Upload Report.

Exporting report data does not change the properties of the RayFlow package data object, but
simply adds a report file to the media repository of the package object.

RayQC offers three report target formats: PDF, HTML and DOCX. There are different methods to
set the actively used format for report exports to RayFlow: either the tool integration command
line call includes a value for the -r parameter regarding the report profile selection, or the
default behavior settings in RayQC are used. If a specific format is given via the command line, it
always precedes the general settings.

Reports may be exported at any time during the evaluation process, which may lead to files with
information about PASSED, FAILED, or NOT FINISHED checklist evaluations within the RayFlow
media repository of a package. The mere existence of a report file in RayFlow may therefore not
be considered as an unambiguous indicator for a finished or successful evaluation phase.

74User Guide RayQC 6.2

Working with RayQC

The RayQC Command Line Interface
RayQC offers a standardized command line interface for parameterized application initialization.
The following parameters may be used in conjunction with the RayQC executable:

Standard parameters

Paramet
er

Description Example

-checklist

-c
Load
checklist
from the
given file
name

"C:\Program Files (x86)\RayQC\RayQC.exe"

-c "C:\Users\Admin\AppData\Local\RayQC\Demo.rqct"

-element

-e
Pass values
to checklist
elements

Example for single element:
"C:\Program Files (x86)\RayQC\RayQC.exe" -c

"C:\Users\Admin\Desktop\ICE validation.rqct" -e

DataField368751317554=C:\MSI\orca.msi

Example for multiple elements:
"C:\Program Files (x86)\RayQC\RayQC.exe" -c

"C:\Users\Admin\Desktop\Example.rqct" -e

DataField1=Abc;DataField2=123

-help

-h

-?

Shows the
command
line interface
help

"C:\Program Files (x86)\RayQC\RayQC.exe" -h

-q Silent mode The checklist is opened and executed in silent mode. Commonly
used with switch -s, which defines where to save the results of
silent operation.

RayQC returns the following exit codes when run with this switch:

0 = checklist complete and passed
1 = checklist failed
2 = checklist incomplete
3 = other errors (read standard output for more information)

This parameter is optional.

Example:
"C:\Program Files\RayQC\RayQC.exe" C:\checklist.rqcp -q -s C:\Users\Administrator\Documents\test.pdf

-s Full file path Defines a full path where to save reports. This switch requires that

75User Guide RayQC 6.2

Working with RayQC

Paramet
er

Description Example

of report
(requires
silent mode
to be
enabled)

silent mode is activates (-q). This parameter is optional.

76User Guide RayQC 6.2

Working with RayQC

RayFlow related parameters

Paramet
er

Description Example

-package

-p
The package
ID from
RayFlow

"C:\Program Files (x86)\RayQC\RayQC.exe"

-p "RSRFC123456789"

-project

-P
The project
ID from
RayFlow

"C:\Program Files (x86)\RayQC\RayQC.exe"

-P "RSRFP4711"

-u "http://rayflow.Raynet.de"

-l "DBowser@Raynet.de"

-pw "Secret"

-url

-u
The URL for
accessing
RayFlow

-login

-l
The login
name for the
RayFlow
connection

-password

-pw
The password
for the
RayFlow login

-auto

-a
Automatically
run checklist
and upload
report

"C:\Program Files (x86)\RayQC\RayQC.exe"

-a

-r "Raynet standard PDF"

-c "C:\Users\Admin\AppData\Local\RayQC\Demo.rqct"

-report

-r
Report profile
name

-t Use currently
logged on
RayFlow user
as
transmission
user

Note:
The parameter -e (-extension) has been deprecated since in RayQC 2.1 and has been
replaced by -r (-report). Additionally, since RayQC 4.0 -e parameter has been
restored with a different functionality and it can be used now to pass the value to
checklist elements.

77User Guide RayQC 6.2

Working with RayQC

The FILE menu
Clicking the FILE button contained within the Main Toolbar opens the file menu. This menu
allows users to quickly access common functions.

New

Opens the dialog that allows creating a new checklist file. If a checklist or project is loaded and
there are outstanding changes, the user will be asked to save them before continuing.

Open

Open an existing checklist or project. If a checklist or project is loaded and there are outstanding
changes, the user will be asked to save them before continuing.

78User Guide RayQC 6.2

Working with RayQC

Save

Saves any outstanding changes in the currently open checklist or project. Please note that this
button is only active when pending changes are detected.

Save as

Allows you to save the currently opened checklist or project under another name, location or file
type.

Create Report

This option calls the create report dialog for the definition of target file name and type.

RayFlow

This functionality is only available when RayQC is embedded in the RaySuite framework; and
therefore connected to a RayFlow server. Users may either upload a report, or trigger the update
of data fields in the RayFlow project, which are defined as part of the post processing routine for a
particular checklist. Users need to be logged in to the RayFlow server to have these options
enabled.

Options

Opens the Settings view.

Close

Closes the current checklist or project. If any changes are pending, the user will be asked to save
them before continuing.

Exit

Closes the current project and the whole RayQC application. If any changes are pending, the user
will be asked to save them before continuing.

79User Guide RayQC 6.2

Working with RayQC

80User Guide RayQC 6.2

Settings

Settings
The Settings area of RayQC is accessible from 3 locations:
- Settings tile on the Dashboard
- Settings tab of the Main Toolbar, which is visible in all views of the application
- FILE menu - Options
It is recommended to check the settings at least once before the productive work with RayQC
begins, since the configuration options offered there determine some properties of the user
interface that may help you to gain quick orientation.

Available settings options

Within the settings area, there are seven configuration groups:

Interface
Options for user interface settings regarding the RayQC application
Behavior
Some automated product behavior can be defined here.
Signing
Definition of options for checklist signing
Plug-ins
Adding or removing global PowerShell and DLL plug-ins
Report profiles
Definition of options for report generation
RayFlow
Required information to connect RayQC with RayFlow.
These settings are only required when your instance of RayQC is used in combination with
RayFlow, Raynet’s workflow management system for packaging processes. If you do not use
RayFlow or any of the other solutions from the RaySuite product family yet, please visit the
Raynet website, or contact your Raynet sales representative for further information on how the
RaySuite can improve your packaging related business processes.
V irtual Machines
This is where the virtual machines that are to be used with RayQC can be defined.

Please refer to the specific sections of this document to get further details on the different
settings configuration groups.

Settings storage locations

When making any changes in the settings area, the changes are saved permanently on a per-user basis after
clicking on the Accept button in the swipe bar. As long as the changes are not accepted, they will only be valid

81User Guide RayQC 6.2

Settings

for this RayQC session and go back to the default settings after restarting RayQC.

The configuration state is saved in the user profile of the currently logged on user: (%appdata%\Raynet\RayQC
\Config\). RayQC creates several settings configuration files:

Config.xml

 Contains the options defined within the Behavior tab of the RayQC settings area.

KeyPairs.xml

Contains the options defined within the Signing tab of the RayQC settings area.

Recent.xml

The XML file that contains the list of items which are shown within the Recent list on the RayQC Dashboard for
a specific Windows User Profile.

Report.xml

 Contains the options defined within the Report Profiles tab of the RayQC settings area.

Be aware:
RayFlow.xml has been deprecated and is not used any more since RayQC 4.0.

If these files are not available when RayQC is launched, they are automatically restored with their
default values as soon as the settings area is loaded within the application interface.

Saving and discarding changes to settings

The swipe bar of the settings area contains two buttons: Accept and Cancel. As long as a user has not made any
changes compared to the currently saved settings, both buttons are grayed out and inactive. They become
active and click-able with the first change of a single settings option, for example when a toggle slide of the
behavior tab is switched.

Inactive swipe bar state - settings have not been modified
compared to the state that is saved within the configuration files.
The swipe bar is expanded. To collapse it (and hide the button
labels), users have to click on the vertical bar of orange dots at the
right-hand side.

Active swipe bar state - settings have been modified compared to
the state that is saved within the configuration files.
The swipe bar is expanded. To collapse it (and hide the button
labels), users have to click on the vertical bar of orange dots at the
right-hand side.

All changes are temporary, and will not be stored within the settings files named above, until
they are saved by clicking the accept button. Users may do that at any time and from any view of

82User Guide RayQC 6.2

Settings

the settings area: RayQC always saves changes from all settings views at the same time.

This means that a user may switch a behavior setting, move to the connections tab, define
RayFlow credentials there, switch to signing and report profiles without performing
modifications there, and then decide to either accept or cancel all changes with one click on the
respective button. It is not necessary to save changes before a tab is left.

However, unaccepted changes take immediate effect on the currently running RayQC instance,
but are lost as soon as the user closes the application. At the next application launch, the
permanent settings are displayed and applied to the system operations again.

83User Guide RayQC 6.2

Settings

Interface
This section of the SETTINGS contains the options to define the language that is used throughout
 RayQC and the option to switch the animations on and off.

Languages

The languages option enables users to choose the language that should be used for the RayQC
application. the language is chosen by selecting one of the options that can be found in the
drop-down menu which is available under the User language interface option.

As shown in the screenshot there are currently two different languages available for the user
interface of RayQC: The available languages are English and German. The active language can be
chosen by selecting it in the drop-down menu and then saving the changes by clicking on the
Save changes button which is located in the swipe-bar.

Note:
In order to apply the language settings, it is necessary to restart RayQC.

Animations

The default display mode of RayQC uses animations at several places, especially when users switch from one
view to another. Whilst this is pretty nice eye-candy, it might be an effect that annoys power users. It may also
be disturbing when RayQC is run via slow remote connections with low bandwidth and delayed reaction time.
Disabling animations may save precious time in these environments. Set the slide toggle to NO to disable

84User Guide RayQC 6.2

Settings

animations, or to YES to keep the smooth transitions in place.

Recent file list

This option is set to YES by default, which means that the list of recently opened projects and checklists is
shown on the RayQC Dashboard. Setting this switch to “NO” hides the recent list. Since the list is recorded on a
per user basis and accelerates access to recently used RayQC files, it is recommended to keep this configuration
option active.

Note:
Switching the Recent file list option does not stop RayQC from recording which files
have been accessed, but simply hides the list from the Dashboard. Therefore, it is
possible to switch the option from inactive to active at any time – the real list of
recently accessed files is always available.

85User Guide RayQC 6.2

Settings

Behavior
Within the behavior view of the RayQC settings section, users can manipulate the following
configuration options:

Write protect plug-in results

Set this slide toggle to YES to prevent manual overriding of element values which were
automatically calculated as plug-in results. The default setting is NO, which means that users
may change the result that has been delivered by plug-ins. There is no strict recommendation to
lock plug-in results or not - it is up to the decision of the quality control manager to allow manual
adjustments or not.

Sign checklists on saving

The signing options defined within the signing tab o the settings view do not automatically trigger checklist
signing..They just prepare RayQC to be able to sign checklists in general. Setting the slide toggle
to YES enables checklist signing, whilst setting it to NO disables it. The combination of general
settings and separate option switch makes it fairly easy to keep permanent signing options but
at the same time be able to make actual use of them flexibly as required.

The slide toggle is not accessible for modifications as long as there is no keypair profile defined
in the signing tab. Please define a key pair profile by using the interface in the signing tab to
enable the toggle control.

Reject checklists without signature

One aspect of system security is checklist signing. Since checklists may run scripts and execute
applications on the local device, it is a matter of enterprise security to make sure that no
malware is brought into the system, and that no unauthorized modifications are executed. By
activating this option, any checklist that is not signed will not be opened by RayQC - or executed
for that matter. Allowing only signed checklists is the safer mode of operation, since it allows to
knowing about the origin of checklists at any time.

Reject untrusted certificates

If an environment is set up to reject unsigned checklists, the idea to make sure signing has been
performed by the application of a trusted certificate is just one tiny step away.

Note:
Activating this option does not automatically reject checklists that are not signed at all.
It simply rejects those checklists, that are signed, with untrusted certificates. To make
sure only checklists signed by trusted certificates are loadable, both options Reject
checklists without signature and Reject untrusted certificates have to be enabled!

86User Guide RayQC 6.2

Settings

Signing
This signing view is only relevant for those RayQC instances, which are intended to create and
edit signed checklist templates. Signing settings are not required for mere evaluation of signed
checklist.

Managing signing options contains the following procedures:

Select the active key pair profile
Create new profiles
Test key validity
Edit profiles
Remove profiles

Read on to get further details on how to accomplish these management tasks.

Key Pair Profile properties

In order to establish a working signing configuration, the following property settings are
required:

Description

Short textual information about the profile for later recognition.

Certificate file

The *.cert file has to be copied to the %appdata%\Raynet\RayQC\config\Security directory. This is done
automatically when a *.cert file is selected via the dialog triggered by the browse button at the right-hand side
of the certificate ield. Also the certificate properties from the file are retrieved and displayed in the “Set up
certificate” field.

Private key selection

The *.pem file has to be copied to the %appdata%\Raynet\RayQC\config\Security directory. This is done
automatically when the *.pem file that matches the certificate is selected via the dialog triggered by the browse
button at the right-hand side of the “Set up private key” status indicator.

Once the key is available in RayQC, its validity can be tested as described below.

Certificate chain valid

This indicator provides information about the trust status of the certificate used within the current keypair

87User Guide RayQC 6.2

Settings

profile. If the machine that runs the RayQC instance trusts the certificate, the checkbox is active. If the certificate
is untrusted, it is disabled. The validity of the certificate is important for those setting configurations that cause
RayQC to reject checklists, that are signed but by untrusted certificates (compare with the section about
behavior settings).

88User Guide RayQC 6.2

Settings

Note:
The "Certificate chain valid" state indicator relies on Windows certificate store status
information that is already available at application launch. Therefore, it is
recommended to establish the trust, if required at all, before RayQC is started and the
actual key pair settings are defined.

Tip:
To establish certificate trust, the root certificate of the one used within the current key
pair profile has to be installed as trusted certificate. The installation may be done on a
per-user or per-machine basis. It is recommended to prepare a machine based
installation, to allow all users of a QC device to operate on the same certificate
preparation level. The procedures required for certificate installation is Windows based,
and therefore not described in detail within this documentation. Please refer to MSDN
or other Microsoft resources to get details regarding this procedure.

Define the active Key Pair profile

1. Go to the settings area and click on the signing tab.

2. Expand the options list provided within the drop down menu named Active KeyPair Profile.

3. Select the desired profile.

Note:
The profile selection is not saved permanently yet - closing RayQC at this point is equal
to discarding the changes to the signing settings profile stock. To actually save the
profile selection beyond the next application closure, the Accept button on the swipe
bar has to be used.

To create a new Key Pair Profile

1. Go to the settings area and click on the signing tab.

2. Click on the button Create at the right-hand side of the Active KeyPair Profile selector control.

3. Enter the name of the new profile as demanded by the displayed dialog.

The profile name has to be unique among the key pair profiles stored for the currently logged
in Windows User on the machine that is running RayQC.

4. Click OK to save the new profile

89User Guide RayQC 6.2

Settings

5. A new option is automatically added to the Active KeyPair Profile selector control.

6. The new profile needs to be edited in order to set the parameters required to actually sign
checklists with it.

90User Guide RayQC 6.2

Settings

Note:
The new profile is not saved permanently yet - closing RayQC at this point is equal to
discarding the changes to the signing settings profile stock. To save the profile for later
re-use, the Accept button on the swipe bar has to be used.

To test a key

1. Go to the settings area and click on the signing tab.

2. Expand the options list provided within the drop down menu named Active KeyPair Profile.

3. Select the desired profile.

4. Click on the Test button at the right-hand side of the "Set up private key" controls.
If the button is disabled and cannot be clicked, the private key may not have been uploaded
yet. If so, please use the browse button to transfer the key to the RayQC settings storage
location.
The button should automatically become active.

5. A dialog is displayed, requesting the password required to encrypt the private key for signing.
Please, enter the password and click OK to start the key validation.

6. The test result is shown within an information dialog at the end of the test routine.

Note:
There are several reasons why a key test might fail. Please follow the details of the
failure message to adjust the right parameters for achieving successful validity.

To edit a Key Pair Profile

1. Go to the settings area and click on the signing tab.

2. Expand the options list provided within the drop down menu named Active KeyPair Profile.

3. Select the desired profile.

4. The properties of the profile are loaded into the input fields below the Active KeyPair
Profile selector.

5. Adjust them according to your needs. They are immediately effective and applied to the
running RayQC instance.

91User Guide RayQC 6.2

Settings

Note:
The new profile properties are not saved permanently yet - closing RayQC at this point
is equal to discarding the changes. To save the profile for later re-use, the Accept
button on the swipe bar has to be used.

To remove a Key Pair Profile

1. Call the settings area and open the signing view.

2. Expand the options list provided within the drop down menu named Active KeyPair Profile.

3. Select the desired profile.

4. Click on the Remove button at the right-hand side of the Active KeyPair Profile control.

5. The profile is removed from the options list.

Note:
The profile is not deleted permanently yet - closing RayQC at this point is equal to
discarding the changes. To permanently remove the profile, the Accept button on the
swipe bar has to be used.
Also be aware:
Once a profile is removed, it is not possible to modify checklist templates that have
been signed by this certificate. Therefore, please be sure to have a copy of the
certificate and key files in case of needing them again at a later time.

92User Guide RayQC 6.2

Settings

Plug-Ins

External Plug-Ins

External plug-ins add new functionality to the checklist processing by adding PowerShell based
or DLL based plug-ins to RayQC. After loading a checklist and opening the editor the functions of
external plug-ins may be found in list of plug-ins in the toolbox on the left side. Functions based
on external plug-ins can be identified by the orange font color.

Be Aware:
To load a plug-in RayQC must be licensed to use it. The Standard Edition of RayQC is not
able to process PowerShell based plug-ins. The Enterprise Edition is needed to run
these plug-ins.

For DLL based plug-ins, a valid plug-in license is necessary. This can be obtained from Raynet.

Handling External Plug-Íns

RayQC has 2 ways of handling external plug-ins:

93User Guide RayQC 6.2

Settings

1. Local plug-ins: these plug-ins are stored inside the checklist file and will stick with it unless removed from the
checklist. A checklist using local plug-ins can be processed on any RayQC instance that loads the checklist file
without any additional actions.

2. Global plug-ins: global plug-ins are stored in the subfolder “plug-ins” in the application directory. Creating a
checklist using a global plug-in will not save the plug-in inside the checklist file. Because of this, other
instances of RayQC need to have the same set of global plug-ins in order to load and process such checklists.

When to Use Which: Benefits / Drawbacks

Local plug-ins: the plug-ins stick to the checklist and it may be run on any RayQC instance with a proper
licensing.

Global plug-ins: using global plug-ins for checklist design unifies the set of used external plug-ins. If changes
or fixes are made to a global PowerShell plug-in, each checklist will use the new version automatically. If local
plug-ins are used, each checklist must be updated separately. On the other hand all plug-ins must be installed
again if the checklist is to be processed on another installation of RayQC that does not have these plug-ins
already installed.

The Plug-In Manager Dialog

Both local and global plug-ins utilize the same dialog for plug-in management. The plug-in manager for global
plug-ins can be found in the settings screen while the manager for the local plug-ins is located in the checklist
editor.

Both dialogs have the same look and functionality. To avoid accidentally editing global plug-ins while editing a
checklist, the plug-in manager for global plug-ins is deactivated if a checklist is open.

Be Aware:
When using the Standard Edition of RayQC, the plug-in manager allows to add / remove PowerShell
plug-ins, even though the Standard Edition of RayQC cannot load such plug-ins and they won’t be
displayed in the toolbox. The same is true for non-licensed DLL based plug-ins.

Add a new PowerShell plug-in

1. Press the button labelled Add PowerShell plug-in.

2. In the following dialog select the directory that contains the plug-in files (manifest.xml and all script files
that are used by the plug-in).

Remove a PowerShell plug-in

1. Select the plug-in to remove from the list.

2. Click Remove selected.

OR right click the plug-in to remove and select delete from the context menu.

94User Guide RayQC 6.2

Settings

Be Aware:
Local plug-ins that are used by a checklist that is currently loaded cannot be removed.
Remove all usages of the plug-in to allow the deletion of the plug-in.

Add a new PowerShell plug-in

1. Press the button labelled Add DLL plug-in.

2. In the following file dialog select the plug-in DLL.

Remove a DLL plug-in

1. Select the plug-in to remove from the list.

2. Click Remove DLL selected.

OR right click the plug-in to remove and select delete from the context menu.

95User Guide RayQC 6.2

Settings

The Plug-In Manager Dialog

96User Guide RayQC 6.2

Settings

Report profiles
Report profiles are required to configure the format definitions for exports of project
evaluations.

Managing report profiles contains the following procedures:

Select the active connection profile
Create new profiles
Edit profiles
Remove profiles

Read on to get further details on how to accomplish these management tasks.

Report Profile properties

In order to prepare decent report format profiles, the following configuration settings are
required:

Profile Description

Short textual information about the profile for later recognition.

Exporting Format

There are 3 predefined export formats users may select from: PDF, DOCX, and HTML. Each of them has certain
advantages and disadvantages, therefore it is important to know what purpose a report file has in order to be
able to decide about the fitting export format. If, for example, a report goes out to inform a product owner, QA
manager or customer about the outcome of specific QA tasks, PDF is most likely the right choice. However, if
the reports are intended to be edited or extended by a later process step of the whole workflow RayQC is part
of, DOCX is easier to handle. Selecting HTML makes sense when structured information is required, that might
even be evaluated and analyzed by automated procedures.

However, the export format of a report profile is not carved in stone at profile creation, but may be adjusted
whenever required. It is just a matter of convenience and efficiency to define the optimal choice right from the
start.

Page Size

The preferred page size for reports should be strongly connected to the default document
guidelines applied to standard documents of an enterprise. RayQC offers users to select from a
predefined set of internationally used page dimension standards:

ISO / DIN A4 (210 mm x 297 mm)
ISO / DIN A5 (148 mm x 210 mm)
ISO / DIN B4 (250 mm x 353 mm)

97User Guide RayQC 6.2

Settings

ISO / DIN B5 (176 mm x 250 mm)
ANSI / ASME Legal (8.5 in x 14 in)
ANSI / ASME Letter (8.5 in x 11 in)

98User Guide RayQC 6.2

Settings

Font Size

Instead of requesting detailed font size definitions for each headline type, paragraph, foot note, etc., RayQC
simply offers 3 size settings (small, medium, large) to the user and defines dependencies according to the base
font size setting on its own.

Logo Path

It is possible to place a product or company logo within the exported report file. The logo file may be stored at
any network or local location, as long as it is accessible for RayQC at the time of report generation. It is
recommended to use common graphic formats, such as PNG or JPG, since these are displayed without any
issues on nearly every operating system. If, for example, the report is generated as HTML file, a copy of the
original logo file is added to the report files folder. Once the report is copied to another device, it may not be
possible to display exotic graphic types there.

Element Filter

With a click on the “Element Filter” button below the standard property set of a report profile, users open a new
dialog which contains options regarding the visibility of specific element types within the generated report files:

Element type: Information
Activate the checkbox to display the content of this element type within generated report files.
Since Information elements do not contain test result information, but usually inform the tester
about the checklist context, it may not be required to include them in reports. However, it is
recommended to keep them within the reports, in order to make sure that the test routines are
fully comprehensible for the reader of the report.

Element type: Checkpoint
Use the checkboxes to determine which elements will be included in reports: Passed, failed, or
void elements. If the report purpose is to outline issues that were revealed by a checklist run, it
may be sufficient to include failed elements. However, a full report of the checklist routines
should contain all elements, and therefore activate all presented checkboxes.

Element type: Multi-Option
The checkboxes allow to include all elements that have a selected result (=valid), and / or all
those that have not been answered (=void). Once again, the right constellation depends on the
report purpose: A full report should contain all elements, whilst a short issue report should be
reduced to problematic or missing results.

Element type: Data Field
Activating the checkboxes in this area determines whether or not empty and / or filled elements
should be part of report files. If none is selected, this element type is not part of the generated
reports.

As soon as all desired changes are executed, the dialog may be closed with a click on the OK
button at the bottom. The changes are immediately taken into account for exports executed
during the current working session of RayQC.

99User Guide RayQC 6.2

Settings

Signature Fields

With a click on the Signature Fields button below the standard property set of a report profile,
users open a new dialog which contains 2 groups of properties for signature options:

Signatures on the summary page
Signatures on the protocol pages

It is recommended to enable signature fields on the summary page, whilst having them on each
of the potentially numerous details pages might be a bit of an overkill for average
acknowledgment needs.

For each group there are these settings to define:

Show signature fields
Activate the checkbox to display signature fields. If the checkbox is inactive, the other settings for this group
do not take effect on the actual report generation process. However, they may be defined as preparation for
later use.

Number of signature fields
RayQC allows to define signature sets of 1, 2 or 3 signature demands. The actual requirement depends on the
QA process applied to the specific project or enterprise RayQC is embedded with.

Label of Signee [1-3]
Make sure to match the number of signature fields to the labels defined for them: If 3 signature fields are
displayed but only one has a label definition, the other 3 will most likely not be overly useful, since the role or
person whose acknowledgment is demanded is unknown to the recipient of the report.

As soon as all desired changes are executed, the dialog may be closed with a click on the OK
button at the bottom. The changes are immediately taken into account for exports executed
during the current working session of RayQC.

Page Filter

With a click on the Page Filter button below the standard property set of a reports profile, users
open a new dialog which contains three options users may activate independently:

Summary Page
Activate the checkbox to add a cover page to the report. The cover contains charts as visual
result summary, as well as the checklist name and result, the date of the report creation, and a
copy of the current task box status of the checklist. It is recommended to include the cover, as it
provides swift access to the key figures of the checklist evaluation.

Protocol Page(s)
The protocol pages contain the checklist elements, as far as configured within the Element Filter
dialog. If no elements have been activated there, an empty protocol page will be the result.

Separating Blank Page
If the blank page is part of the report, it is added directly after the cover page and right before the protocol

100User Guide RayQC 6.2

Settings

page(s). It is not possible to add a blank page to reports that do not contain both cover and protocol pages. The
purpose of the blank page is to get the report details on the right side for printing it in duplex mode.

As soon as all desired changes are executed, the dialog may be closed with a click on the OK button at the
bottom. The changes are immediately taken into account for exports executed during the current working
session of RayQC.

101User Guide RayQC 6.2

Settings

Define the active Report Profile

1. Go to the settings area and click on the “report profiles” tab.

2. Expand the options list provided within the drop down menu named Active Report Profile.

3. Select the desired profile.

Note:
The profile selection is not saved permanently yet - closing RayQC at this point is equal to discarding
the changes to the report profile stock. To actually save the profile selection beyond the next
application closure, the Accept button on the swipe bar has to be used.

To create a new Report Profile

1. Go to the settings area and click on the “report profiles” tab.

2. Click on the button Create at the right-hand side of the Active Report Profile selector control.

3. Enter the name of the new profile as demanded by the displayed dialog.

The profile name has to be unique among the report profiles stored for the currently logged in
Windows User on the machine that is running RayQC.

4. Click OK to save the new profile

5. A new option is automatically added to the Active Report Profile selector control.

6. The new profile needs to be edited in order to set the parameters required to actually provide
a custom report design.

Note:
The new profile is not saved permanently yet - closing RayQC at this point is equal to discarding the
changes to the report profile stock. To save the profile for later re-use, the Accept button on the
swipe bar has to be used.

To edit a Report Profile

1. Go to the settings area and click on the “report profiles” tab.

2. Expand the options list provided within the drop down menu named Active Report Profile.

102User Guide RayQC 6.2

Settings

3. Select the desired profile.

4. The properties of the profile are loaded into the input fields below the Active Report Profile
 selector.

5. Adjust them according to your needs. They are immediately effective and applied to the
running RayQC instance.

Note:
The new report profile properties are not saved permanently yet - closing RayQC at this point is equal
to discarding the changes. To save the profile for later re-use, the Accept button on the swipe bar has
to be used.

To remove a Report Profile

1. Go to the settings area and click on the “report profiles” tab.

2. Expand the options list provided within the drop down menu named Active Report Profile.

3. Select the desired profile.

4. Click on the Remove button at the right-hand side of the Active Report Profile control.

5. The report profile is removed from the options list.

Note:
The profile is not deleted permanently yet - closing RayQC at this point is equal to discarding the
changes. To permanently remove the report profile, the Accept button on the swipe bar has to be
used.
Also be aware:
At least one profile needs to be present within the selector, therefore the last report
profile cannot be removed.

103User Guide RayQC 6.2

Settings

RayFlow
This settings view is only relevant for those RayQC instances, which are about to be connected to
a RayFlow server. This is where the settings for the connection with the RayFlow server can be
configured.

The URL address of the RayFlow Server is shown here. Click on the button to open the link
to the server in a web browser.

104User Guide RayQC 6.2

Settings

Virtual Machines
The settings for virtual machines can be configured in this tab of the Settings section.

By default, the list of machines is empty. Each machine that needs to be used, has to be imported first. The view
is divided into three sections:

Function Buttons (Add, Remove, Search)
This panel is used to add a new machine, remove a selection, and search for machines in the list. In order to
filter the list, type a few letters into the search field and the list will be filtered automatically. To clear the
results either click X or clear the content of the search box.

List of Machines
This is a list of all the machines defined for RayPack Studio products. Each machine is represented by an icon
representing its type (VMware Workstation, VMWare ESX, or Hyper-V), machine name, and (if configured)
the name of the snapshot that is to be used. Select any machine from the list to see its details shown on the
right side.

Virtual Machine Editor
The right panel contains various controls and inputs about the currently selected machine. Later in this chapter
their meaning is discussed together with slight differences between different machine types.

To Import a Virtual Machine...

Warning:
It is not possible to import virtual machines if RayQC is already installed on a virtual
machine!

105User Guide RayQC 6.2

Settings

1. Press the + button to expand the new machine drop-down menu.

2. Select type of machine to import.
3. The machine will be added to the list. Use the editor to configure the details for the machine.

Be aware:
Due to technical limitations of the APIs of VMware it is not possible to define both
Workstation and ESX machines. Once one of these has been imported, the other type
will be disabled!

To Delete a Virtual Machine...

1. Select a machine from the list.
2. Press the X button in the functional panel.

Editing Virtual Machines

The virtual machine editor is divided into three tabs. The visibility of tabs depends on the type of
the currently selected machine.

Virtual Guest Tab

This tab contains common properties which are valid for all types of supported virtual machines.

Display Name
This is the name under which the machine is shown in the list. For VMware Workstation and ESX the name can
be a user-friendly string which helps to determine the purpose of the machine (for example My Repa cka ging
Ma chine etc.). For Hyper-V machines, this value must be equal to the name that is visible in the Hyper-V
manager.

Machine Type
The type of the current selection. This setting is read-only.

106User Guide RayQC 6.2

Settings

Path to VMX File (only Workstation and ESX)
This is the full path to the .vmx container file. For Workstation machines, this must be a full absolute path to a
file, for example C:\Virtual\Machine\Machine.vmx. For ESX, the name must include a datastore token (a
name surrounded by square brackets) followed by the relative path of the .vmx file. The path can be viewed
in the properties dialog directly in a vSphere client. A sample value would be [DATASTORE]Machine
\Machine.vmx.

Be aware:
Failure to provide valid file paths to the VMX makes the machine unable to work with.
Machines with invalid paths or unsupported file formats will be marked as invalid and
the user will not be able to use them.

Computer Name (Hyper-V only)
This should be the full DNS computer name of a virtual machine.

Authentication
This setting configures credentials used to connect to a virtual machine. This field is always
required even if auto-logon is enabled on the guest Operating System. In order to configure
the credentials, press the button Configure credentials... and enter the user name and the
password. In order to log in as a domain user, use DOMAIN\USER syntax.

Be aware:
Passwords are stored in an encrypted form in a .txt file. This however offers by no
means a state-of-the-art security. Expect that these values can be decrypted easily and
as such never store confidential data on machines with shared access to RayQC
configuration files.

Snapshot
Defines which snapshot is to be used. While it is generally possible to always use the last
snapshot (the current one) in a production environment the name of a snapshot should always
be specified either by typing the name manually in the textbox below or by pressing the ...
button and using the selector dialog.

Host Tab (Only VMware ESX and Hyper-V)

This tab contains the properties of the hypervisor server. Because VMware Workstation uses solely local files, the
tab is not visible when working with Workstation machines. When this tab is shown, all values presented here
are mandatory.

Host Address + Port
Defines the location and the port of the host. Contact the responsible administrator to find out
these values. By default port 5985 is used for Hyper-V and 443 for ESX machines, but they can be
overridden individually.

Authentication
This setting configures the credentials used to connect to the host. This field is mandatory even
if auto-logon is enabled on the guest Operating System. In order to configure the credentials,
press the button Configure credentials... and enter the user name and the password. In order
to log in as a domain user, use the DOMAIN\USER syntax.

107User Guide RayQC 6.2

Settings

Note:
The credentials for the host are usually not the same as the credentials that are used to
connect to the VM.

Be aware:
Passwords are stored in an encrypted form in a .txt file. This however offers by no
means a state-of-the-art security. Expect that these values can be decrypted easily, and
as such never store confidential data on machines with shared access to RayQC
configuration files.

Additional Tab

Comments
This is an additional invisible field that can be used for notes and remarks about the machine.

.
Copy files using shared folder
When this option is active, shared folders are used to transfer files to the virtual machine. This functionality
may be limited in some environments. When unchecking this option a legacy file-based transfer will be used
which may be slightly slower than the shared folder approach.

Execute tasks on a virtual machine as Administrator
By default, the tasks are executed as Administrator to ensure that the setup files changing machine files and
registries are allowed to do it. For certain environments and operations this behavior may not be desired.
Unchecking this checkbox makes Raynet start the tasks as the invoker.

Be aware:
This option is only recommended for troubleshooting or for tasks which do not require
administrative privileges. Certain Raynet functions / plugins may not work when the task
is not running as administrator.

Snapshot Selector
To start the Snapshot Selector first select the Before starting the machine revert it to the
following snapshot option that is available beneath the Snapshot heading in the V irtual
Machines tab in the Settings. After the option has been selected, click on the Browse [...]
button to open the Snapshot Selector.

108User Guide RayQC 6.2

Settings

In the Snapshot Selector the available snapshots for the virtual machine are shown in a tree
structure. Either select a snapshot or close the Snapshot Selector without changing the current
selection. The following options are available in the Snapshot Selector:

OK: This option is used to close the Snapshot Selector saving the currently selected status.
Close: This option is used to close the Snapshot Selector without saving the changes.
Apply: This option is used to save the currently selected status without closing the Snapshot
Selector.

Preparing Virtual Machines
Depending on the type of the virtual machine, some extra steps may be required for it to work
with RayQC. The following guide outlines the required steps.

General (All Types)

The guest machine must be able to see the host machine by its DNS name. For example, if the
host machine name is MWS0189, then the guest must be able to resolve its name to an IP

109User Guide RayQC 6.2

Settings

address.
On the host machine, incoming traffic on a specific port must be enabled. The same remote
port must be allowed by the firewall configuration on the guest machine. The port range used
by default is 48654-48999, starting from the lowest available. The port range can be configured
by changing configuration files.
It is highly recommended to disable the User Access Control (UAC) on the guest machine. This
is especially important for silent operations, so that the setups can be started without user
interaction.
It is highly recommended to enable auto-logon to the machine for the configured user. This
ensures that the machine can be automatically powered on and started without waiting for the
user to log-in interactively. The following link describes how to configure it: https://
support.microsoft.com/en-us/help/324737/how-to-turn-on-automatic-logon-in-windows.
Even if auto-logon is enabled on the guest machine, the matching credentials must be
provided in the RayQC configuration. These are used to execute the programs and commands
on the VM in the right context (so that the user is able to see dialogs etc.), but due to technical
limitations on virtualization solutions they cannot be used to bypass the initial login / lock
screen.
Although possible, we do not recommend using machines without snapshots. It is
recommended to have at least snapshot on the VM, and to have it selected in the VM
configuration.

VMware Workstation

VMWare Tools must be installed on the guest machine.
VIX API must be installed on the host machine (this is already done if VMware Workstation is
installed on your host machine).
o There is a known issue in VMware Workstation 14 and later, where the necessary COM

interfaces are not registered by default. You can fix this problem by applying the steps,
described in the following Knowledge Base Article: https://raynetgmbh.zendesk.com/hc/en-
us/articles/360000277786-RSC200351-Executing-Virtual-Machine-Operations-on-VMware-
Workstation-14.

VMware vSphere / ESXi

VMWare Tools must be installed on the guest machine.
PowerCLI must be installed on the host machine in a version that is compatible with the
vSphere / ESXi version. See https://code.vmware.com/web/dp/tool/vmware-powercli/11.0.0
for more information.
PowerShell 3.0 or higher must be installed on the host.

Hyper-V

Configuring Hyper-V requires a few extra steps. A comprehensive guide can be found under the
following Support Knowledge Base Article:
https://raynetgmbh.zendesk.com/hc/en-us/articles/360000308223-RSC200355-How-to-

https://support.microsoft.com/en-us/help/324737/how-to-turn-on-automatic-logon-in-windows
https://support.microsoft.com/en-us/help/324737/how-to-turn-on-automatic-logon-in-windows
https://raynetgmbh.zendesk.com/hc/en-us/articles/360000277786-RSC200351-Executing-Virtual-Machine-Operations-on-VMware-Workstation-14
https://raynetgmbh.zendesk.com/hc/en-us/articles/360000277786-RSC200351-Executing-Virtual-Machine-Operations-on-VMware-Workstation-14
https://raynetgmbh.zendesk.com/hc/en-us/articles/360000277786-RSC200351-Executing-Virtual-Machine-Operations-on-VMware-Workstation-14
https://code.vmware.com/web/dp/tool/vmware-powercli/11.0.0
https://raynetgmbh.zendesk.com/hc/en-us/articles/360000308223-RSC200355-How-to-Configure-a-RayPack-Studio-Application-for-Hyper-V

110User Guide RayQC 6.2

Settings

Configure-a-RayPack-Studio-Application-for-Hyper-V

Short checklist of the prerequisites for Hyper-V machines:
WINRM has to be configured with TrustedHosts entries on both guest and host.
PowerShell 3.0 or higher must be installed on the host.
RayPack Studio Tools for Hyper-V must be installed on the guest machine and be a part of the
base snapshot (so that they start each time when the machine boots after reverting to a
selected snapshot).

The following checklist helps to find and fix any possible issues when working with Hyper-V
machines:

1. Is PowerShell 3.0 installed (on both the Guest and the Host machine)?
a. Check $PSVersionTable.PSVersion in PowerShell.

2. Is the machine properly configured in the Settings > V irtual Machines screen (pay attention
to hardcoded IP addresses which may be dynamically assigned by DHCP).

3. Is RayPack Studio Tools for Hyper-V installed on the Guest machine? Is the process vm-
proxy.exe from RayPack Studio Tools for Hyper-V running?

4. Is WINRM configured?
a. Check winrm qc.

5. Does WINRM have the proper TrustedHosts entries on both the VM and the server?
a. winrm s winrm/config/client '@{TrustedHosts="RemoteComputer"}'.
b. winrm g winrm/config/client - shows the current TrustedHosts lists.
c. More information: https://technet.microsoft.com/en-us/library/ff700227.aspx

6. Does WINRM have a connection to the VM and vice-versa?
a. - Test-WSMan -ComputerName IP.

7. Are all necessary ports unblocked on the physical machine?
a. The default port range is 48654-48999.

Note:
This version of RayQC does not support connecting to Hyper-V clusters.

Changing TCP / IP Configuration

In some cases it may be required to use custom port ranges, timeouts, etc. for VM related
functionality.

The following table summarizes the available options:

Setting name Default
value

Description

TcpIpDefaultPort 48654-48999 The port range used for TCP / IP communication. Use

https://raynetgmbh.zendesk.com/hc/en-us/articles/360000308223-RSC200355-How-to-Configure-a-RayPack-Studio-Application-for-Hyper-V
https://technet.microsoft.com/en-us/library/ff700227.aspx

111User Guide RayQC 6.2

Settings

Setting name Default
value

Description

minus (-) and comma (,) to indicate which ports are
valid for incoming communication. Make sure that
these ports are not blocked by your firewall. PackBot
tries to find first valid free port and listens for it from
lower to higher numbers.

TcpIpMaxRetry 3 The maximum number of retries before asserting that
the machine is not available.

TcpIpDefaultReceiveTimeout240000 Reverts to the default value if Windows does not define
its own timeouts.

TcpIpDefaultSendTimeout 240000 Reverts to the default value if Windows does not define
its own timeouts.

The options can be configured by editing the configuration file RayQC.exe.config. Each option is
defined as a pair of key and value in the <appSettings />. For example, to change the default
port to 50000 and the maximum number of connection retries configure the following:

[...]

<appSettings>

 <add key="TcpIpDefaultPort" value="50000" />

 <add key="TcpIpMaxRetry" value="5" />

[...]

Note that these options are not present out-of-the-box in the configuration file, in which case
the defaults from the above table should be used.

Advanced Configuration Options
Besides the product configuration options that are available from the Settings section of the
application UI, there are some additional configuration settings users may adjust to tailor RayQC
towards their individual requirements.

Logging RayQC activity

The program data directory (%AppData%\Roaming\Raynet\RayQC\Logs) is used by default to store
the application activity log files. A separate log file is created for each started RayQC Instance. If
the default settings remain unchanged, RayQC adds a new line to this log file for every system
INFO level message that is generated during application use.

In order to change the default settings for the log file behavior, users have to manually edit the
log4net.config file, which resides in the root of the installation folder of RayQC (usually something like C:
\Program Files (x86)\RayQCAdvanced\). The settings which are most likely to be of interest for
adjustments are:

112User Guide RayQC 6.2

Settings

Log file storage location

The log files are by default stored in “%appdata%\Raynet\RayQC\Logs. However, it is possible to define any
other absolute local paths as well as shared network locations for logging resource storage.

<file type="log4net.Util.PatternString"

 value="%env{AppData}\\Raynet\\RayQC\\Logs\\%date{yyyy-MM-dd HH-mm-

ss}.log" />

Be aware:
The user that runs RayQC must have write permissions in the log file location in order to
initiate and maintain the message flow to the log file. If the user does not have sufficient
access rights, there will be no error message, or actual product usage cutback, but
simply a loss of system activity documentation. Please refer to the Troubleshooting
section for additional instructions in case of missing logs.

Max. log file size

The max. log file size may be defined as "KB", "MB" or "GB". The default setting for newly installed
RayQC instances is "2048KB"

<maximumFileSize value="2048KB" />

Log level

The most frequently used log level settings are DEBUG, INFO, WARN, ERROR, FATAL, OFF, whilst OFF
prevents logging at all, FATAL is the most restrictive but still writing setting, and DEBUG the most
talkative option.
The recommendation is to use the DEBUG level for newly setup systems, since a lot of the
information logged in this mode may help to adjust settings regarding access rights, and the like.
As soon as the application and system are up and running productively, setting the log level to
WARNING should be sufficient for permanent maintenance.

<level value="DEBUG" />

Default logging configuration

The default configuration file is given below as a review and backup support:

<?xml version="1.0" encoding="utf-8" ?>

<log4net>

 <appender name="RollingFileAppender"

113User Guide RayQC 6.2

Settings

type="log4net.Appender.RollingFileAppender">

 <file type="log4net.Util.PatternString"

 value="%env{AppData}\\RayQC\\Logs\\%date{yyyy-MM-dd HH-mm-ss}.log" />

 <rollingStyle value="Once" />

 <maxSizeRollBackups value="2" />

 <maximumFileSize value="10240KB" />

 <staticLogFileName value="false" />

 <layout type="log4net.Layout.PatternLayout">

 <conversionPattern value="%date [%thread] %-5level %logger - %message%

newline" />

 </layout>

 </appender>

 <root>

 <level value="DEBUG" />

 <appender-ref ref="RollingFileAppender" />

 </root>

</log4net>

Further Information

RayQC uses an external library to provide logging functionality. Please refer to the online-
documentation provided for the log4net project (http://logging.apache.org/log4net/) in order to
get further details regarding available configuration and usage options. log4net can be adjusted
to connect directly with databases or event-loggers. There are numerous options for layout and
behavior manipulations. RayQC system administrators with a slight affection for perfection are
highly welcome to configure their very own logger version.

http://logging.apache.org/log4net/

114User Guide RayQC 6.2

Settings

115User Guide RayQC 6.2

About

About
Clicking on the About tile from the Home Screen displays the about area. It contains
the get started view, providing information about the individual tools of RayQC,
Samples and links to various resources. Additional supportive views regarding license
and edition as well as troubleshooting are available by clicking on the other view

tabs in the About area.

Get Started
Choosing the get started button from the Home Screen reveals this view in the about section. It
contains information about the individual tools of RayQC, Samples, and links to various resources.
Additional supportive views regarding license and edition, as well as, troubleshooting are
available by clicking on the view tabs.

http://www.raynet.de

116User Guide RayQC 6.2

About

Meet RayQC

These are the two main components of the application UI: Editor and V iewer.

117User Guide RayQC 6.2

About

Samples

RayQC contains samples to show how to use the different interfaces in order to create checklists
with plug-ins, conditions, post processing options, and how to evaluate them later on. Click on
one of the tiles to open a sample checklist template or project.

Resources

RayQC includes various resources that can be used to make the experience with RayQC more
productive and provide help where needed. Please note that some resources (including some
items in this help file) are only available online or with an internet connection.

get started

This opens the get started help file, which includes tips & tricks how to configure and use RayQC.

help

Opens this document.

support

Opens the website for product support contact.

www.rayqc.de
RayQC on the web.

118User Guide RayQC 6.2

About

License and Edition
The About area also contains the LICENSE AND EDITION tab, providing all usage relevant
license information about the current product instance.

Changing the license can be achieved using the license wizard by choosing Open the license
wizard.

Active product edition

RayQC is available in different product editions: Standard, Bundle, and Enterprise. Please note
that the license that has been used to activate the current application instance takes direct
effect on the set of features which are effectively available. Therefore, some of the options
documented within this User Guide may not be executable with the current RayQC installation.

http://www.raynet.de

119User Guide RayQC 6.2

About

The features which are part of the activated product edition are shown as a list under Your
RayQC features. If a bundle license has been activated, the following features should be
available:

RayQC - Checklist
RayQC - Advanced Module
RayQC - Power Shell
RayQC - Command Plugin
RayQC - RayFlow
RayQC - Checklist Signing
RayQC - Virtual Machines

120User Guide RayQC 6.2

About

Note:
Please contact our support tea m or your Raynet sa les representa tive if you have any
questions regarding the licensing status of your RayQC instance.

https://raynetgmbh.zendesk.com
mailto:sales@raynet.de

121User Guide RayQC 6.2

About

Troubleshooting
The About area contains the TROUBLESHOOTING tab, providing handy information about the
crucial system paths defined for the current product instance.

Any information displayed within this tab is read-only. It is provided to ensure transparency
about the current instance settings, which is vital for proper troubleshooting measures in case of
support relevant issues.

Installation folder

This path shows where the currently running instance of RayQC is installed. Click on the Open
installation folder link to open a windows explorer instance at the displayed location for further
instance resource review.

Logging and performance diagnostics

RayQC is by default configured to write log files with information about each product work
session. A new log file will be generated for every launch of the current application instance.
These log files contain vital information for any troubleshooting or help desk measure, such as
environment information about the physical machine RayQC resides on, the steps performed
during a session, and exception details thrown by the application in case of operational issues.
Please make sure that the target directory displayed here provides sufficient disk space and is
accessible for the currently logged in user. Click on the Open logs folder link to open a windows

http://www.raynet.de

122User Guide RayQC 6.2

About

explorer instance at the displayed location for further instance resource review.

123User Guide RayQC 6.2

About

124User Guide RayQC 6.2

Checklist Structures

Checklist Structures
As already mentioned before, RayQC checklists are XML based. Therefore, the backbone of
checklists may be analyzed either from the underlying XML file angle, or from the superficial
Checklist Editor interface scope.

Please refer to the Appendix sections Basic Checklist Structure and Checklist Example to take a
look at the structure of the XML base. The topics within this section Checklist Structures are
designed to describe things from the UI angle of the Checklist Editor.

Basic Checklist Properties
The screenshot below shows the Checklist Editor interface when a minimal checklist project is
opened for manipulation. Actually, it is the default project that is automatically created within
the temporary session memory whenever a user creates a new checklist template file. The
editor interface is a composition of different areas of activity:

The title of the currently opened checklist may be edited by selecting the PROPERTIES tab.

The listing of currently defined checklist elements and checklist properties is displayed within
the checklist canvas below the title.

The canvas tab navigation provides access to the editor interfaces for the following property
groups:

Steps and Actions allows to manipulate the overall checklist structure, with groups and the

125User Guide RayQC 6.2

Checklist Structures

elements nested within them. Defining conditions, using internal or external plug-ins,
changing element and group order - all of that is executable here.
Properties provides access to change basic checklist properties, such as description,
bypassing options, and the like.
Supporting Files is designed as collecting container for all external files used as resource
within the checklist, such as images, help files, and the like.
Plug-Ins allows to add external plug-ins to the current checklist template. Once added,
external plug-ins may be used from the plug-in section in the toolbox of the Checklist
Editor interface.
Post Processing enables standard actions RayQC executes whenever a project run based
upon the checklist is finished, such as sending updates and reports to RayFlow.

The following sections provide details about each tab and the manipulation options they
provide.

Steps and Actions

View organization

This default checkbox editor view is separated into three columns of activity:

Toolbox Checklist structure Details pane

,

126User Guide RayQC 6.2

Checklist Structures

The toolbox at the left contains items that may be added to
the checklist structure: groups, elements, and plug-ins.

The toolbox allows adding new objects to the current checklist
item flow. By simply dragging a group or element to the area
with the already defined elements and dropping it at the
desired target position, users add a default object that is ready
for adjustments. Please refer to the elem ent related sections to
get more information about the options available for adding,
moving and manipulating checklist items. An additional
section is available with group option details.

Use the arrow icons at the upper left corner of the
toolbox to undock or dock the whole column. The undocked
toolbox allows users that operate on monitors with small
resolutions to organize their Checklist Editor interface according to their individual space
requirements. Adjusting the height and the width of the undocked toolbox is possible by using
the standard application window resizing functionalities provided by the underlying operating
system.

The checklist structure is displayed within the center column of this view. It shows all groups
and elements of a checklist along with their hierarchy structure.

Selecting an object within the center column loads it's data into the details pane at the right-
hand side of this editor view. From this pane, users have access to modify group & element
properties (such as description, options, etc.), conditions and plug-in usage.

Checklist organization

A checklist consists of any number of groups, which can in turn contain any number of elem ents.
Whist groups are aligned in a flat sequence of single objects, elements may be adjusted in multi-
level tree structures. From an organizational point of view, groups are task bundles, whilst their
elements are single task steps users have to perform whilst evaluating the checklist.

Both, groups and elements, may be equipped with conditions, so that they are executed
according to the results of prior element tests. Checklists are assumed to be worked in a top-
down step by step manner. Therefore, the evaluation of conditions for dynamic content
availability always expects prior checklist items to be already evaluated.

The result of all currently visible checklist items is summed up to the general checklist result,
which is displayed as a color coded ribbon at the lower right corner of the Checklist Viewer
interface. An element result may consist of a boolean Yes or No information, a comment string,
or the selection of a single value from an option set. According to the integration of automated
plug-ins, item results may be entered manually by the evaluating user, or automatically as a
result of a plug-in logic execution.

127User Guide RayQC 6.2

Checklist Structures

The default checklist is already equipped with a group, which itself has been filled with a Data
Field checklist element. Starting from this minimal setup, users are free to add as many groups
and elements as required to fulfill the checklist purpose.

Be aware:
In order to keep checklist templates as clear as possible, it is not allowed to add
elements to a checklist directly. They always have to be defined within a group
container.

Groups

Group objects are structural elements, designed to support organizational needs and logical
restrictions for checklists.
Within the toolbar, group items are represented by a group item. Users have to apply drag and
drop on it in order to create new groups within checklists.

Within the checklist structure column, each group is displayed with a headline that contains its
roman index number value (I, II, III, IV, etc.) and the group title. Elements that belong to the
group are displayed slightly indented, as an element hierarchy tree below the group headline.
Once the user clicks on the headline, the background-color switches to orange and the group
properties are loaded into the tabbed area of the details pane on the right-hand side of the
Editor interface.

The headline of a group within the Checklist Editor: Roman index value, title and description

The headline of an unselected group when the mouse pointer hovers above it.

The headline of a selected group with colorized background

Please refer to the Groups section for further details regarding the options available within group
objects, such as conditions, element positioning and nesting, and the like.

Checklist elements

The checklist elements are single test steps. They have to be bundled within groups in order to
provide a decent checklist task organization. Therefore, elements always reside within group
containers. They are represented by single boxes with a light orange background color once they
are selected by a left-click. Depending on the elem ent type, different options may be set by the
integrated control buttons.

128User Guide RayQC 6.2

Checklist Structures

Each element has a number, displayed in the upper left corner of the element resemblance
within the checklist structure. The number is unique and incrementing within each parent
group. If elements are nested, each level has got its own numbering resemblance (e. g., 1, 1.1,
1.2, 1.2.1, 1.2.2, etc.).

An element within the structure of the Checklist Editor: Index value, description, type icon,
plugin and condition indicator icons

The unselected element item when the mouse pointer hovers over it.

The selected element item with colorized background.

Groups
Whenever a user selects a group object, its details become visible and editable by the interface
that is immediately loaded into the details pane. There are two sub-tabs present in the details
pane when groups are selected: Properties (including title and description) and Conditions
(including conditions that determine the visibility of the group contents for later checklist
evaluation runs).

Basic Group Properties

Group Title

The group title is the string that is always visible for group recognition. Therefore, the group title
should be a short, cut to the core outline of the group purpose.

When a new group is dropped within the checklist structure, a default value ("Group Title") is
already present within the title input field, ready for proper adjusting.

The title has to be an alphanumerical string, and is not evaluated regarding string formatting
tags.

Group Description

The group description is only visible in the Checklist Viewer and Editor interfaces. The description is designed to
provide detailed information and evaluation instructions for the elements bundled inside of the specific group
container.

In order to allow editors to create well-structured and easily readable descriptions, it is actually

129User Guide RayQC 6.2

Checklist Structures

possible to enrich the string with basic form a tting options, which even allows images to be
added to the description area.

130User Guide RayQC 6.2

Checklist Structures

Group Conditions

Conditions can be defined for groups and elements. A condition is always based upon the result
of one or more element evaluation results. Therefore, the first group of a checklist may never be
equipped with conditional dependencies, since no elements have been evaluated before.

However, as soon as the second group is added to a checklist, it is possible to define Conditions
for the visibility (and along with it the availability for evaluation) of this group. Users may add
Conditions that depend on the result of Checkpoint and Multi-Option elements.

Conditions can also be added from any existing checklist element result, no matter if it is an automated, plug-
in-based element or a manually filled in value as long as that element is located in a group that is located prior to
this group.

Be aware:
When Conditions are heavily used, it may happen that a user loses track of the actual
evaluation path. Since it is possible to add Conditions regarding the result of
conditional objects, it is actually possible to create conditional statements that may
never result in the visibility of a certain group or element. Therefore, it is highly
recommended to double-check conditional constructs, and additionally use the
V alidate Conditions button from the Checklist V iewers Swipe bar. If the check
returns issues, these should be cleared before the checklist is deployed for productive
use.

To enable the condition interface, users have to activate the Conditions tab within the details
pane of a group container. As soon as the tab is active, users are able to drag and drop elements
from the checklist structure to establish one or more buckets of conditional statements.

Each conditional statement consists of two parameters: The checklist element it relates to, and
the actual value of that element that is expected in order to evaluate this specific conditional
statement to true. Use the show button to highlight the element a conditional phrase depends
on within the Checklist Structure area. Please refer to the Conditions section for further details on
the mechanisms behind conditional statements, buckets and their evaluation by RayQC.

The conditional statement line is removed from its parent bucket as soon as the delete
icon at its right-hand side is clicked.

Group Controls

Once a group has been added to a checklist, it offers some controls for manipulation:

Expand & Collapse Group Content

The screenshots below show a default group container in its expanded and collapsed display
mode. To switch between these modes, the group object is equipped with an arrow at the left-
hand side of the Group Title.

131User Guide RayQC 6.2

Checklist Structures

If the arrow points up, clicking it collapses the group container.

If the arrow points down, clicking it expands the group container.

Note:
Expanding or collapsing a group does not take effect on the availability of the group
elements for future evaluation procedures. Groups may be expanded and collapsed
from both, the Checklist Viewer, and Checklist Editor interface. The current display
mode is not stored permanently, but is reset to the default as soon as the checklist
object is closed. Switching from V iewer to Editor does not reset the extent of a group
container.

Move Group Up or Down

Groups are aligned as a flat sequence of one container following the other. Therefore, they all
reside on one horizontal level, but may be reordered towards their vertical sequence. To do so,
users apply drag & drop: Clicking on the group header, dragging the group container to the
desired new position before or after another group, and dropping it there is done in seconds.
RayQC presents an error tooltip if moving a group leads to inconsistencies regarding conditions
and / or plug-in execution result usages: Elements and groups may not refer to objects that are
positioned later within a checklist. If this rule would be broken by a move action, dropping to an
invalid state is prohibited and a message is displayed showing the conflicting element(s).

Remove Group from Checklist

Every user with access to the Checklist Editor view may remove groups from the current base
checklist structure. To do so, users either right-click the group header and select Delete from the
context menu, or hit Delete on the keyboard once a group header has been selected by a left-
click.

132User Guide RayQC 6.2

Checklist Structures

A confirmation dialog is displayed, expecting the user to acknowledge the deletion of the group
and all attached elements, conditions and logic. Please note that the group deletion is
permanent and irreversible as soon as the changes to the checklist file are saved.

Hitting the YES, REMOV E button within this confirm dialog actually executes the object
deletion.
Hitting the DO NOT REMOV E or CANCEL button within this confirm dialog aborts the
deletion.

Since each checklist project must contain at least one group object, it is not possible to delete
the last group from a checklist.

133User Guide RayQC 6.2

Checklist Structures

Be aware:
Removing a group automatically removes all items that have been organized within the
group from the checklist. Therefore, dependencies users have built with conditions
targeting the elements placed within the group become invalid and are automatically
removed along with the group object.
However, objects that have been referenced from the file system, such as plug-ins, help
files, images, and the like will not be affected by removing a group that makes use of
them. Please remove these items from your supporting files pool to maintain a strictly
clean checklist resource library.

Elements
Elements are the actually decisive objects within a RayQC checklist. They are defined within the
XML based structure of the template file type (*.rqct), and come alive when result values are
added to form a checklist project instance (*.rqcp)

As outlined before, there are some basic properties which are present for all element types
within RayQC, whilst others are rather type-specific. The following summary is describing the
general properties, whilst later sections go into individual details.

Elements are displayed as indented boxes within the group elements of checklists. The
displayed content depends on the currently active application view (Checklist Viewer or
Checklist Editor) and the selection status of the element.

Basic Element Properties

The basic properties are named in the order of their position within the element boxes.

Position index value

The index value is a dot separated list of hierarchical level values, displayed within the upper left
corner of the element box representations. All elements have an explicit index value, unique
within their parent group. The first digit group gives an outline of the position within the
elements on the root level of the groups item tree structure. The second and all subsequent digit
groups define the position of the item within the child element list of their parent element. The
maximum depth of a checklist element hierarchy is 4, which leads to a position index length
limitation of 4 levels (e. g. 1.2.3.4).

Users who evaluate the checklist refer to elements by their position index value, since the
internal identifier (element id) is by default not visible for them. However, the index value is
present in all checklist views and view modes.

The position index cannot be entered manually, but changed by moving the element, either
dragging it up and down within the vertical evaluation sequence of elements, or using the left or
right icons (which vertically changes the indent, and therefore the hierarchy level, but not the
vertical sequence of elements).

134User Guide RayQC 6.2

Checklist Structures

If an element is not available for evaluation in the Checklist Viewer (e. g., due to condition
restrictions), the position index value sequence of the parent group is not changed, which means
that there may be gaps when the checklist is opened within the Checklist Viewer. (For example,
an item number 7.3 may directly be followed by 7.5, due to a conditional availability of item 7.4)
Triggering index value changes by the appearance of dynamic tree branches of the checklist
would surely lead to clear element identification issues, which is why living with gaps in the
index sequence is the preferred operational method.

Element type

Each element has a specific, fixed type. Once an element has been added to a checklist, its type
cannot be changed any more. The element type decides about options and controls available for
an element, since each type has a unique purpose by design, which require different editor
choices and possibilities.

Within the Checklist Viewer, evaluators recognize the item type by the result input controls.
Information elements do not have result input controls, Data Field elements display a text input
field, Checkpoint elements a radio button, and Multi-Option elements a selector control. Within
the Checklist Editor, authors recognize the type by the icon displayed within elements box
representation.

Please refer to the upcoming Element Types section for further details.

Element ID

The element ID is the internal identifier of elements, used for example to share item result
values between items and their conditions, plug-ins, and the like. Prior versions of RayQC
revealed the ID within the Editor or Viewer interface in order to allow users to manually establish
relations between elements. However, thanks to the advanced Editor interface with its drag &
drop capabilities, there is no longer need for manual relation definition. Therefore, neither
element ID's, nor group ID's are displayable within the application views. If users have to find out
about these properties, they have to open the underlying checklist structure XML file with an
external editor.

Description

Each element has a description property, designed to contain the task description given for the
current checklist item. The Information type for example usually does not consist of much more
than the description property.
The text can contain RayQC specific format markup tags to allow editors to add some structure,
or even descriptive images, to their task definitions.
It is recommended to outline not only instructions on the actual task, but also note conditional
options and dependencies set upon the item within the text.

Note:
If the description alone does not provide enough possibilities to give the full task
description, each item may be augmented with an additional help file. BUT: the text of
an element is always plain to see, whilst help files have to be brought to view by
clicking on the help icon optionally displayed within the elements box representation

135User Guide RayQC 6.2

Checklist Structures

in the Checklist Viewer mode.

Element Types
RayQC knows four basic types of checklist elements:

Information

Designed to display info text and help files as additional
support for users who evaluate the checklist
Do not require result feedback during evaluation
Do not directly affect the overall checklist result
May not be used as trigger elements for plug-in execution
May contain conditions, but are not usable as criterion for conditional statements themselves
(i. e. they can be displayed dynamically based on the results of other elements, but cannot be
decisive for the availability of other elements or groups)

Data Field

Designed to gather textual evaluation results
Require a string as check result
Do not directly affect the overall checklist result, but usually have to be filled with a result in
order to allow a checklist to switch from NOT FINISHED to a final PASSED or FAILED status.
May be used as both: trigger elements for plug-in execution and target containers for plug-in
execution return values
May contain conditions, but are not usable as criterion for conditional statements themselves
(i. e. they can be displayed dynamically based on the results of other elements, but cannot be
decisive for the availability of other elements or groups)

Checkpoint

Designed to gather exact result states
Demand a boolean Yes / No check result, usually with a
predefined setting regarding the expected (correct) evaluation result
Have direct decisive influence on the overall checklist result (PASSED or FAILED)
May be used as both: trigger elements for plug-in execution and target containers for plug-in
execution return values
May contain conditions, and are usable as criterion for conditional statements themselves (i. e.
they can be displayed dynamically based on the results of other elements, and can also be
decisive for the availability of other elements or groups)

136User Guide RayQC 6.2

Checklist Structures

Multi-Option

Designed to gather exact result values, mainly for
checklist branch availability control and the collection of
meta-data
Allow to select the actual result from a set of predefined options (1 of n)
Do not directly affect the overall checklist result, but have to be filled with a result in order to
allow a checklist to switch from NOT FINISHED to a final PASSED or FAILED status.
May be used as both: trigger elements for plug-in execution and target containers for plug-
in execution return values
May contain conditions, and are usable as criterion for conditional statements themselves (i.
e. they can be displayed dynamically based on the results of other elements, and can also be
decisive for the availability of other elements or groups)

These RayQC checklist element types are equipped with differing sets of options and methods.
Just to name one: Conditions may only be defined based upon the result of Checkpoint and
Multi-Option elements. Therefore, any checklist without at least one of those element types is
strictly unconditional and has an always identical straight forward evaluation path.

Please read the following sections for in-depth information regarding the element types and
their individual specifications.

Adding Information items to a checklist group basically leads
to the display of an info box. Therefore, Information elements
are designed to provide additional hints and details regarding
a specific Checkpoint or test group of a checklist.

However, the Information item may be manipulated towards the checklist template
requirements by customizing the following properties:

Formatting the element description text with RayQC markup tags
Adding a help file that may be opened within an external viewer
Conditions regarding the actual availability of the item itself (according to the general
requirements for condition usage)

Be aware:
Items of this type may not be evaluated within conditional statements themselves,
since they do not have an actual result value that conditions might somehow interpret
to decide about the right conditional path to follow.
The same reason (missing container to carry result information) prevents them from
being triggers for plug-in executions.

Please refer to the linked document sections to read details about the options available for each
Information item property.

137User Guide RayQC 6.2

Checklist Structures

Information elements as they are displayed within the Checklist Viewer interface. The
background color may be grey or white due to the alternating schema of the group elements.

Information elements as they are displayed within the Checklist Editor interface. The background
color may be white, light orange or orange due to the selection and hover state of the element.

Checklist items of this type demand input as evaluation run
result. It does not matter if the text is entered manually by the
evaluating user, or automatically by plug-in logic.

However, Data Field items may be manipulated towards the checklist template requirements by
customizing the following properties:

Formatting the element description text with RayQC markup tags
Adding a help file that may be opened within an external viewer
Plug-ins can be added to use external script or executable logic for evaluation purposes.
Conditions regarding the actual availability of the item itself (according to the general
requirements for condition usage)
If the no restraint option is active, the Data Field is optional, which allows to finish the
evaluation without providing the comment text

Be aware:
Items of this type may not be evaluated within conditional statements themselves,
since they do not have a result value type conditions might somehow interpret to
decide about the right conditional path to follow.

Please refer to the linked document sections to read details about the options available for each
Data Field item property.

Checklist Viewer display of a Data Field element with the text input field expecting the result
value. The background color may be grey or white due to the alternating schema of the group

elements.

Data Field elements as they are displayed within the Checklist Editor interface. The background
color may be white, light orange or orange due to the selection and hover state of the element.

138User Guide RayQC 6.2

Checklist Structures

Checkpoint entries usually require a definitive Yes or No answer
from the evaluating user. The result may be selected
manually, or injected by a specific plug-in result.

However, a Checkpoint comes along with an expected answer, which is Yes by default. When
the checklist is evaluated, the expected answer option is shown by marking it bold (as shown
within the screenshot below). Even though this default setting may be switched to expect No as
correct answer, the user is still forced to note a result. This default demand may be switched off
by the don't evaluate option (see below).

If the expected answer is not the evaluation result, the executing user has to document a failure
comment. The intention behind this Checkpoint behavior is to improve the test result quality by
adding information about reasons for failures. If a checklist result is sent to the person that has to
fix issues that came up during the evaluation process, getting details on circumstances and
symptoms of an issue definitely support a quick and correct resolving

If a Checkpoint answer is not matching the expected answer, the result of the whole checklist is
set to failed. This default behavior can be overridden by the Allow Exception option. If this
option is enabled, users are requested to add a reason for the exception which will be displayed
along with the standard failure comment.

This setting once again supports the idea of proper communication between the team
members which are involved in the whole workflow of object creation and testing: Even though
a checklist template editor may know which Checkpoints can trigger non-decisive exceptions,
the evaluator himself may very well not be able to correctly judge which exceptional failure is
acceptable and which one is not. At the same time it is possible that external dependencies,
such as test environment settings or unusual test preconditions, take effect on the result, which
should not lead to a general failure of the whole checklist.
Therefore, adding not only the option for exceptions, but at the same time a requirement for
additional exception descriptions allows to document the check result in a proper manner for
both - further test object and workflow improvements.

Use the links provided below to directly jump to detailed sections regarding available property
setting options for checkpoint entry elements:

Formatting the element description text with RayQC markup tags
Adding a help file that may be opened within an external viewer
Plug-ins can be added to use external script or executable logic for evaluation purposes.
Conditions regarding the actual availability of the item itself (according to the general
requirements for condition usage)
Switching the value means to define No as expected result for this Checkpoint entry (not Yes
as expected by default)
If the Evaluate this element option is not checked, there is no expected check result, which
allows to finish the evaluation independent from the actual answer
Exceptions enable a successful checklist evaluation result even if this particular Checkpoint
entry was marked to have failed

139User Guide RayQC 6.2

Checklist Structures

Tip:
The result of Checkpoint entries can be selected as decisive condition for the
availability of checklist groups and items. Please refer to the conditions section for
details!

Checklist Viewer display of a Checkpoint element with default setting: Yes is the expected,
correct result. The background color may be grey or white due to the alternating schema of the

group elements.

Checklist Viewer display of a Checkpoint element with switched value setting: No is the
expected, correct result.

Checklist Viewer display of a Checkpoint element with don't evaluate setting: There is no explicit
result expectation.

Checkpoint elements as they are displayed within the Checklist Editor interface. The background
color may be white, light orange or orange due to the selection and hover state of the element.

Multi-Option elements require a definitive "1 from n" answer
selection from the evaluating user, where n is any number
greater than 1. The result may be selected manually or
injected by a specific plug-in result.

In contrast to Checkpoint elem ents with their Yes / No labels, there is no validation setting for the
Multi-Option item choice option labels. When a checklist template editor adds Multi-Option
items, a custom label text for each added result option has to be defined. This label is the only
decision criteria evaluators will have to make their choice.

Multi-Option elements have two essential purposes: First of all they are suitable for mere
information requests from the evaluating user. Furthermore, they are the perfect companion for
the creation of dynamic content switches. Whenever a checklist has to provide several
evaluation paths that depend on a specific test result or user choice, providing a set of triggers as
Multi-Option choices allows making different branches of the checklist template available or
unavailable.
Please refer to the conditions section for further details on the possibilities for dynamic content
definition.

During checklist evaluation procedures, the selected option does not take effect on the PASSED
or FAILED status of the overall checklist, since there is no right or wrong, true or false definition
for the options. However, as long as there are Multi-Option items without user selection within a

140User Guide RayQC 6.2

Checklist Structures

checklist project, the status will always be NOT FINISHED.

Please use the links provided below to directly jump to the details sections regarding available
property setting options for Multi-Option elements:

Formatting the element description text with RayQC markup tags
Adding a help file that may be opened within an external viewer
Plug-ins can be added to use external script or executable logic for evaluation purposes.
Conditions regarding the actual availability of the item itself (according to the general
requirements for condition usage)

Tip:
The result of Multi-Option elements can be selected as decisive condition for the
availability of checklist groups and items. Please refer to the conditions section for
details!

Checklist Viewer display of a Multi-Option element with the drop-down selector control
expecting the result choice. The background color may be grey or white due to the alternating

schema of the group elements.

Multi-Option elements as they are displayed within the Checklist Editor interface. The
background color may be white, light orange or orange due to the selection and hover state of

the element.

Element Options
The following section provides a general overview regarding the available options for checklist
items. Whilst several options may be defined for any type of item, some options are not
available for all item types. Please refer to the element types section for a list of available
options per type.

Element options are defined within the Checklist Editor and apply to the availability, evaluation
and display style evaluators experience during checklist runs within the Checklist Viewer
interface.

Each item of a checklist may be linked to a help file, containing additional information about the
specific test task, such as constraints, procedure steps, and the like. At present, RayQC allows to
add RTF and PDF files as help files.

141User Guide RayQC 6.2

Checklist Structures

Be aware:
Whilst RTF files are displayed by an integrated viewer, PDF files may not be accessible
on all evaluator systems. An external PDF viewer application is required to open PDF
help files, e. g. Adobe Reader.

If an item has a help file link, a question mark icon is displayed at the right-hand side of the
item box within the Checklist Viewer interface. As soon as a user clicks the icon, an

additional application window is launched, displaying the content of the linked help file. In case,
no help file is linked to the element, an error message is shown when this icon is clicked upon.

Note:
Help files have to be added to a checklist before they can actually be used within
elements. Please refer to the information provided within the section about the
supporting files tab of the Editor interface for instructions how to manage help files.

To activate this option

1. Within the Checklist Editor, scroll to the checklist item that has to be equipped with a help file
link, and select it with a left click.

2. Activate the properties tab of the details pane on the right.

3. Select one of the available help files by expanding the help files selector menu and clicking
on the desired file name.

4. Save the changes to the checklist template.

5. Switch to the Checklist Viewer to check whether the link to the help file is valid, and clicking
the help icon really opens the expected file.

To deactivate this option

1. Within the Checklist Editor, scroll to the checklist item whose help file link has to be removed,
and select it with a left click.

2. Activate the properties tab of the details pane on the right.

3. Click on the help files selector to expand the menu, and hit Delete on the keyboard to remove
the relation between the help file and the currently active element.

4. Save the changes to the checklist template.

Note:
Removing the relation between a help file and an element does not remove the help
file from the pool of supporting files stored within the checklist container. Removing a
help file from the container has to be executed by the controls provided within the

142User Guide RayQC 6.2

Checklist Structures

supporting files tab of the Checklist Editor interface.

Important aspects of dynamic checklist evaluations are conditional statements. In RayQC, users
are able to define a combination of several conditional statements, which may decide about the
actual evaluation path of a checklist. For example, if the result of Checkpoint A is TRUE and the
result of Multi-Option B is FALSE, checklist group X has to be evaluated. If not, checklist group X
is invisible and does not affect the result of the checklist. Conditions may be applied to single
elements as well as to complete group objects.

The logical idea of Conditions in RayQC 6.2 is based upon the so called "disjunctive normal
form" (DNF), which allows building any kind of condition as a combination of ORs between ANDs.
To be more precise: A DNF is a disjunction of conjunctive clauses. Within our checklist editor,
clauses are called buckets. Within each bucket, there may be several conditional statements, but
all have to evaluate to TRUE in order to let the bucket evaluation result become TRUE. If the
condition for an element contains more than one of those buckets, it is sufficient to have one
bucket evaluate as TRUE to let the whole condition evaluate as TRUE. So you see, the buckets
contain a number of ANDs, and are chained by ORs.

Handling conditions via the RayQC Checklist Editor user interface has been adjusted to follow the
latest RaySuite interface guidelines: Adding a condition to an element is achieved by a
combination of drag and drop operations, followed by selections from predefined drop-down
controls:

A Multi-Option element with an already existing condition, containing one bucket with one conditional statement that needs to be
extended.

143User Guide RayQC 6.2

Checklist Structures

To add another clause to the condition, the decisive element has to be dragged...

... to the drop area of the existing bucket (or below to open a new bucket).

At the end the user just needs to select the expected result for a true conditional clause evaluation from the automatically added
bucket item.

Conditions specified for a certain item decide, whether or not the item itself is available for user

144User Guide RayQC 6.2

Checklist Structures

interaction in the Checklist Viewer interface. The results of unavailable items will not be
considered when the overall checklist result is calculated.

The number of conditional statements is limited by logical restrictions Conditions have to stand
up against:

A Condition controls the availability of the checklist item (or group) that contains the
conditional statements..
(It is not possible to define a Condition in item A that controls the availability of item B or
group C.)

A conditional statement can only target checklist item results.
(It is not possible to define the availability of an element dependent on the availability of
another element or a group.)

A conditional statement targets exactly one Checkpoint or Multi-Option element result value.
(It is not possible to check against the textual result of Data Field elements.)

Hint:
To check against the textual result of Data Field elements, use functions like:
ContainsString, CompareValue, or NumberInRange.

A conditional statement can only refer to results of items that are listed higher within the
checklist item sequence (e. g. in a prior group or with a higher position within the same group
as the item that includes the conditional statement definition).
Therefore, the first item within a checklist may not be bound to Conditions, since there are no
prior item results to validate against.

A Condition is evaluated to be either true or false.
If it evaluates to true, the item (or group) is automatically available for processing within the
Checklist Viewer.

A Condition is by default evaluated to true if all of the conditional statements evaluate true.
(Item evaluation is by default executed in conjunction mode (i.e. statements are combined by
logical AND operators.)
It is possible to change the default assessment method to disjunction mode, i. e. conditional
statements are combined by logical OR operators, please see below.

A Condition always controls the availability of the owning object along with all direct children of that object
(e.g., all elements and sub-elements of an unavailable group are unavailable as well).

Be aware:
When Conditions are heavily used, it may happen that a user loses track of the actual
evaluation path. Since it is possible to add conditions regarding the result of conditional
objects, it is actually possible to create conditional statements that may never result in
the availability of a certain group or element. Therefore, it is highly recommended to
double-check conditional constructs, and additionally use the V alidate Conditions
button from the Swipe bar, which is available in the Checklist Viewer. If the check

145User Guide RayQC 6.2

Checklist Structures

returns issues, these should be cleared before the checklist is deployed for productive
use.

Note:
The items stored within a checklist group are indexed. If an item is not available for user
interaction, its index number is missing from the present checklist number sequence.
This choice of checklist interface design leads to the fact that users may very well notice
that there are items which are not visible or accessible for them. However, providing a
stable index reference for each checklist item, independent from the current
availability for evaluation, is considered more important from an organizational /
communicative point of view, than the absence of any indicators regarding conditional
items.

To activate this option

1. Within the Checklist Editor, scroll to the checklist item that should only be available under
certain circumstances.

2. Select the element with a left-click and select the Conditions tab on the Details pane.

146User Guide RayQC 6.2

Checklist Structures

Be aware:
The Conditions tab itself is permanently displayed for all checklist items and groups.
However, if there is no checklist element present that might actually be evaluated for
conditional statement definitions, users are simply unable to drop items into it.

3. Drag any Checkpoint or Multi-Option element that resides earlier within the checklist
structure to the Conditions tab, and drop it there. If it is the first drop, a new bucket is created
automatically. If one or more buckets for conditional phrases are already present, the new one
will either be added to one of the existing buckets, or wrapped into a new one - dependent on
the exact position of element dropping. Please observe the hover effect shown by RayQC as
soon as an element is dragged into the Details pane area to get info about the target object:
new or existing bucket.

Please keep in mind, that the conditional statements within one bucket are evaluated in an
AND relation: All statements have to evaluate to true in order to have the bucket evaluated to
true. The buckets themselves are related by OR operators: If one of the buckets evaluates to
true, the whole condition is regarded to be true, which allows the parent element (or group)
to be seen (and evaluated) by users within the checklist viewer.

Be aware:
Checkpoint elements may have an active Expected V alue option, setting the "correct"
result to NO.
In this case the conditional statement result option TRUE resembles the checkpoint
entry result choice NO (and vice versa for result option FALSE and result choice YES).

4. Save the changes made to the checklist and switch to the Checklist Viewer mode.

5. Use the V alidate Conditions button from the Swipe bar to make sure no invalid conditional
statement combination has been created.

If there are issues returned from the check, click on the MORE button within the info dialog to
get details regarding the incorrect statements. Resolve the issues and re-run the check until
no further issues are reported.

6. Check whether the item becomes available as the expected combination(s) of evaluation
results are selected.

When each of the items present within a checklist is considered to be a rule to check,
Exceptions are the circumstances under which breaking the rule does not really matter.
Exceptions can only be added to Checkpoint elements, since they are the most strict checklist
elements, and therefore most likely to step into an exceptional result state.

When a checklist editor enables the Exception option for a checkpoint, he allows the evaluator
to document the actual test result as is, but define it to be uncritical towards the checklist result
calculation. For example, when the expected result for a checkpoint is Yes, but the evaluator
selects No, the whole checklist will be marked as failed. Even though a failure reason will be
given by the evaluator, this functionality would not suffice for those cases, in which the failure

147User Guide RayQC 6.2

Checklist Structures

reason is not related to the original test object, and therefore should not affect the overall test
result.

Note:
It is not possible to activate the exception option and when the Evaluate this element
 option for an item is not enabled.

To activate this option

1. Within the Checklist Editor, scroll to the Checkpoint element that has to be equipped with an
exceptional result state.

2. Open the Properties tab within the Details pane at the right-hand side.

3. Activate the Allow exceptions checkbox.

4. Save the changes made to the checklist and switch to the Checklist Viewer mode.

5. Set all checklist item results to evaluate to true to set the checklist result to PASSED.

6. Set the result state of the manipulated Checkpoint element to the result that resembles a failure.

7. The checklist item is marked as failed and the exception checkbox becomes available for activation. A failure
reason is expected to be entered. The current checklist result is NOT FINISHED (since the failure reason is
missing).

8. Activate the Exception checkbox. A text input field becomes visible, expecting an Exception reason from
the evaluator. The failure reason is no longer required.

9. Enter an Exception reason. The checklist result switches to PASSED.

148User Guide RayQC 6.2

Checklist Structures

The screenshot shows a checklist in the state that has been outlined in the exception activation procedure
above. Even though element no 5 of the first group is marked with a failed check result, the exception allows a
positive overall checklist result as soon as the reason is entered.

The Expected V alue option is only available for Checkpoint elements. Such elements can have
only two result states: Yes and No, where Yes is by default the expected result required to be
able to achieve an overall checklist result of PASSED.

Sometimes it may be tricky to set the textual description of a Checkpoint to actually match this
behavior. To avoid misunderstandings due to complex test descriptions, RayQC has been
extended with the Expected V alue, which defines No to be the expected, correct answer.

When an evaluator uses a checklist, the expected result that evaluates to true is marked with a
bold font color. So, by default Yes is marked bold. If Expected value is set to No then - No is
marked bold.

To activate this option

1. Within the Checklist Editor, scroll to the Checkpoint that has to be equipped with a switched
value expectation.

2. Select the Checkpoint element with a left-click, and call its Properties tab within the Details
pane at the right-hand side.

3. Switch the current expected value setting from Yes (default) to No.

149User Guide RayQC 6.2

Checklist Structures

4. Save the changes made to the checklist and switch to the Checklist Viewer mode.

5. Set all checklist item results to evaluate to true to set the checklist result to PASSED.

6. Set the manipulated Checkpoint result to the not bolded result option Yes. The item box background turns
from green to orange, and the overall checklist result switches to FAILED.

The screenshot above shows a checklist with two checkpoint entries:

Item number 3 shows the standard behavior: Yes is the expected value which is displayed in a
bold font color. If it is selected by the evaluator, the item background switches to green and
the item result is considered true for the overall checklist result calculation.

Item number 4 shows the value switch behavior: No is the expected value which is displayed
in a bold font color. When Yes is selected by the evaluator, the item background switches to
pink and the item result is considered false for the overall checklist result calculation.

Note:
Changing the expected value to No may affect Conditions defined for the result of the
Checkpoint element, since it changes the correct value for the item, which is what a
condition asks for. Please review affected conditions after changing value switch
settings!

RayQC uses the result of Checkpoint and Data Field element types to calculate the result state of
the whole checklist. Therefore, if a Data Field is missing, or a Checkpoint result has not been
inserted yet, a checklist is not complete, and thus cannot be PASSED.

150User Guide RayQC 6.2

Checklist Structures

In order to set user input optional for elements without actual influence for the checklist result,
for example for items which collect additional meta-data, there are two item properties:

Evaluate this element for Checkpoint elements

This option is active by default, which leads to the standard behavior of using the Checkpoint
result for the overall checklist result calculation.
Deactivating this setting leads to the removal of any result expectation for the item. Therefore,
in the Checklist Viewer interface, there is no bold font style for both result options.

Additionally, optional Checkpoint results may still be used to define conditions that control
the availability of other checklist items. If no result is selected, the conditional statement
cannot be evaluated, which means that the conditional element will not be displayed at all. If a
user selection is present, the conditional statement is evaluated according to the standard
condition execution ruleset.

Note:
It is not possible to activate the exception option when the Evaluate this element
option for an item is not enabled.

Allow this Data Field to be empty for Data Field elements

This setting has no visual effect on the items box within the Checklist Viewer interface.
However, if it is activated for a Data Field element, the checklist evaluation can be terminated
without providing any result content for the element.

Both are handled the very same way: The irrelevant checklist item is displayed within the general
checklist flow, and users may very well specify a result. However, if an optional value is not set,
the checklist can be finished, and therefore result in PASSED or FAILED.

To activate this option

1. Within the Checklist Editor, scroll to the item that has to be defined as optional.

2. Select the element with a left-click, and open its properties tab from the Details pane at the
right-hand side.

3. Activate the Allow this Data Field to be empty checkbox

4. Save the changes made to the checklist and switch to the Checklist Viewer mode.

5. Leave the manipulated item untouched, and set all other checklist item results to evaluate to true. The
checklist result is automatically set to PASSED even though the optional item has not been answered.

6. Enter a result (text or Yes / No decision) for the manipulated item. Observe the unchanged checklist result
state.

151User Guide RayQC 6.2

Checklist Structures

The screenshot above shows a checklist with two optional items:

Number 2 in the second group is an optional Checkpoint element, number 1 is an optional Data Field. Both are
not answered and yet the checklist result PASSED is available.

Conditions are one appropriate tool to add dynamic aspects to a checklist. The other tool is the
open plug-in interface RayQC provides for all element types. A plug-in can read fields that are
already filled, process these values and fill other fields with data. The effort involved in filling a
checklist can actually be reduced significantly in this manner.

Tip:
This section deals with the plug-in options present for element configuration within the
Checklist Editor interface and the effects plug-ins have on checklist projects within the
Checklist Viewer.
Please refer to the plug-ins section for further details regarding the available types of
internal standard plug-ins, required files and definitions for the integration of external
(custom) plug-ins, and tips on how plug-ins may be combined for advanced checklist
logic implementations.

To activate this option

1. Within the Checklist Editor, scroll to the element that has to be equipped with a plug-in.

2. Select the element with a left-click, and open its plug-in tab from the Details pane at the
right-hand side.

152User Guide RayQC 6.2

Checklist Structures

Please note that Information elements may not be extended by plug-in functions, and
therefore do not have a plug-in tab within their Details pane.

3. Browse the plug-in list displayed within the toolbar for the desired function. Use the search
field if required. Drag the desired plug-in function to the plug-in tab of the details pane
displayed for the currently selected element. (As an alternative, plug-in functions may as well
be dropped on an elements that is already present within the Checklist structure area in the
center of the Checklist Editor interface. However, dropping a plug-in function there still
requires to opening the plug-ins tab of the affected element in order to be able to define the
required parameter settings of the plug-in function.)

Please note that every plug-in function has a defined set of valid parent elements. If a function
cannot be used in combination with a specific element type, RayQC prevents users from
dropping the plug-in function onto this element type. The internal plug-in documentation
contains information about valid function - element type combinations. External plug-ins
have to contain this information as part of their manifest file.

Another important fact about plug-in usage is that each element may only be combined with
a maximum of 1 plug-in function. Therefore, if a user tries to drop a plug-in function on an
element that already has a plug-in usage, RayQC displays a dialog, asking the user what to do:
Replace the existing plug-in function for that element, or abort adding the new plug-in
function relation.

Plug-in usage modifications may take serious effect on the logical flow of checklists. Just
imagine that in scenario A a specific element converts a boolean result (e.g. by using the
InvertBoolean function of the Logic plug-in), whilst this inversion is missing in scenario B: This
small difference may cause conditional dependencies and references established by element
result usage for function parameter definitions to be evaluated totally different, which in turn
may lead to a dramatically changed evaluation flow. Well, it is highly recommended to
double-check the outcome of plug-in replacement in order to prevent undesired side-effects.

4. As soon as a plug-in has been added to an element, RayQC displays input controls for the
parameters needed to successfully execute the plug-in function.
Since each plug-in comes with an individual set of parameters, a full list cannot be provided in
this section. It is highly recommended to read the plug-in section for details regarding the
internal plug-ins delivered with the RayQC installer resources, and review the manifest file or
contact the author of external plug-ins for a more detailed technical documentation of those
plug-ins.

5. Now it is time to save the checklist template changes, and test them by walking through the
steps of the checklist within the Checklist Viewer.

6. Make sure to set all element results as required to provide all parameter values and element /
group availability status settings needed to make the element with the newly created plug-in
available and fully prepared.

7. A rightwards pointing arrow icon should be available within the element checkbox displayed
within the Checklist Viewer interface. Clicking that icon triggers the plug-in execution.

8. Make sure that the plug-in logic is executed as expected. If it seems due, prepare different

153User Guide RayQC 6.2

Checklist Structures

parameter sets to determine successful and failing executions are covered with decent
checklist reactions (e. g. error messages displayed within comment items, dynamic checklist
branch availability, etc.). The result returned by the plug-in function execution is by default
stored as the result of the element that hosts the plug-in function. However, due to type
transitions, element options and other affecting settings, the result that is actually displayed
within the Checklist Viewer interface may very well differ from the original return value of the
plug-in function. This has to be kept in mind whilst testing and debugging the different
function scenarios.

Elements of the Data Field type have the ability to read data from the connected RayFlow server
via the RayFlow plug-in interface. Each property of a specific RayFlow workflow data object (e. g.
package orders) may be requested and used within the data field item text.

Since communication with RayFlow is established via web service and always relates to a
specific data object within the RayFlow database, there are some prerequisites that have to be
given in order to use the RayFlow parameter option:

Connection settings need to be given. These may either be defined globally via the RayQC
settings view connections, or locally for projects that have been opened via the tool
integration of RayFlow, and equipped with parameters containing the connection credentials.
A RayFlow workflow data object identifier must be given. This unique ID may either have been
injected directly from RayFlow as a parameter provided by the RayQC tool integration
command, or may be derived from manually or automatically filled in content from another
data field item.
The attribute name of the RayFlow property must be known.

Note:
The set of actually available values for retrieval from RayFlow depends on the individual
object structure defined for the connected RayFlow instance. Please contact your
RaySuite system administrator or refer to your RaySuite instance documentation for
details regarding object definitions and the interface provided for external
communication.

Note:
For further information on options provided by the RayFlow plug-in, please refer to the
RayFlow plug-in section of this document.

Element Controls
Additionally to the options users may set for the internal properties of checklist items, there are
some controls that help to organize the elements in relation to the whole checklist. The
Checklist Editor interface provides the following controls to manipulate the item set of a
checklist:

Add a n elem ent
D elete a n elem ent

154User Guide RayQC 6.2

Checklist Structures

M ove a n elem ent up or dow n
Increm ent or decrem ent the indenta tion level of a n elem ent

The screenshot above shows an element box with some active control options. Since the item is
a multi-option type element, only the type specific controls are displayed. The first line of the
item box contains information and controls about the item position within the checklist group.

Since not only elements, but also groups may be used to structure a checklist, some additional
information is provided for global group management as well:

Add a group
D elete a group

Please read the following sections to gain in-depth knowledge on how these controls are used,
and when their usage may be handy for the provision of decent checklist designs.

Once a checklist is opened within RayQC and the Checklist Editor mode is active, it is possible to
add new elements to any of the existing groups of the checklist.

To add an element

1. Scroll the checklist area to display the desired target position of the new checklist item.

2. If the target group is collapsed, expa nd it to reveal the items already bundled inside of it.

3. Move the mouse pointer to the Toolbar area on the right and click on the item type that should be added.

4. Keep the left mouse key pressed and drag the item to the group container area at the left. An
indicator bar is shown, pointing to the expected position of the new item. If no indicator bar is
shown, the current mouse pointer position is not a valid target area.

155User Guide RayQC 6.2

Checklist Structures

5. As soon as the desired position is marked, drop the item by releasing the left mouse key. The
group content is updated with the new item. The index values of all later items within the
group are updated to match the new group content collection.

If the new element has been dropped at the first position within a group, it is automatically
added on the highest nesting level, indicated by the index value of 1 set for the new item.
If the new element has been dropped below an existing item, it is by default added as the next
item in the checklist. For example, if the element above the new one has an index value of 1, the
new element becomes the next element with index value 2.
In case the element is dropped on a child element then the element becomes the child element
of the parent element. E.g. If the parent element has an index value of 1 and it has a child
element with index value 1.1, then when an element is dropped on 1.1, it will get the next index
value that is 1.2.
The maximum depth of a checklist element hierarchy is 4, therefore it is not possible to drop
elements to a deeper level than the fourth.

The screenshot above shows the drag path (dark gray line) of a new information item. If the user
drops the new item right now, it is added below the item number 1.1.1, and 1.1.2 will be the
designated item number.

In order to adjust the horizontal position of an element, the controls left a nd right have to be
used. Furthermore, a user can change the vertical position of an element by dragging and
dropping the element as described previously.

As soon as an element has been added to the group, its ba sic properties and type specific controls
are available for manipulation.

156User Guide RayQC 6.2

Checklist Structures

Note:
Please make sure to save the changes made to the checklist structure to keep them
permanently. If the changes are not saved, closing the checklist file leads to the loss of
all new settings!

Once a checklist is opened within RayQC and the Checklist Editor mode is active, it is possible to
remove elements from any of the existing groups of the checklist.
A group has to have at least one element, thus deleting the last element of a group is not
possible. If the whole group is obsolete, directly deleting the group object from the checklist is
the recommended procedure.

Be aware:
Deleting an element simultaneously deletes all sub-elements that have been nested
below the element, as well as all conditions pointing to the element.

To remove an element

1. Scroll the checklist area to display the group that contains the item that is about to be
deleted.

2. If the target group is collapsed, expand it to reveal its items.

3. There are 2 options to delete the item:

- Right-click on the item and select Delete from the context menu
 - Left-click on the item and press the Delete key on your keyboard

4. Within the confirmation dialog, review the list of affected conditions and sub-elements to make sure the item
deletion does not cause unexpected side-effects.

5. Click on "YES, REMOVE" to delete the item, or click on "DO NOT REMOVE" or CANCEL to abort the deletion.

Clicking "Yes, remove" automatically closes the confirmation dialog, removes the selected item from the
checklist group and updates both items with conditions pointing to the deleted element as well as the index
values of all items within the same group but with a later position.

Note:
Please make sure to save the changes made to the checklist structure to keep them
permanently. If the changes are not saved, closing the checklist file leads to the loss of
all new settings!

Building a decent checklist structure is not necessarily done with the first attempt. It is far more
likely that elements need to be adjusted regarding their position within checklist groups.
Therefore, RayQC offers simple drag-and-drop option to move an element (and all its sub-elements) up or
down in the checklist.

157User Guide RayQC 6.2

Checklist Structures

Be aware:
Moving elements upwards may take effect on the conditions defined for the item. Since
conditions always have to be defined for items that are positioned higher than the item
they are defined for, moving an item up might cause invalid conditional structures, and
is therefore suppressed by the Checklist Editor interface logic.

Whilst checklist groups are aligned in a flat sequence without the possibility to build hierarchical
tree structures, elements within a group may very well be arranged in trees to visually support
dependencies and relations between the items.

Changing the indent of an element is therefore always an activity that has to be viewed relative
towards the element neighbors:
Incrementing the indent of an element turns the element (and all its children) into a subelement
of the item at the next higher position on the same tree level.

An example

A group contains the items A at index position 1, B at index position 2, and C at index position 3.
Incrementing the indent of item B leads to the following new structure:

Item A stays at position 1.
Item B is now a subelement of item A, and therefore has the new index value of 1.1.
Item C is moved one position up, since the index position 2 became vacant when B was
reorganized.
If item C has subelements, their root index value is decremented by one, whilst all other levels
stay as they are. (e. g. 3.1 would now be 2.1; 3.4.5 would now be 2.4.5, and so on).

Initial element hierarchy

158User Guide RayQC 6.2

Checklist Structures

Updated hierarchy after incrementing indent of item B

Decrementing the indent of an element turns the element (and all its successors) into a
subelement of the item at the next higher position on the same tree level.

Another example

A group contains the items A at index position 1, B at index position 1.1, and C at index position
1.2. Decrementing the indent of item B leads to the following new structure:

Item A stays at position 1.
Item B is now a root element on the same level as A, and therefore has the new index value of
2.
Item C is no longer a subelement of A, but of B and is moved to index position 2.1.

Initial element hierarchy

159User Guide RayQC 6.2

Checklist Structures

Updated hierarchy after decrementing indent of item B

As outlined in the example above, whilst incrementing the indent does not break the current
nesting of child elements, decrementing the indent may very well do so. Therefore, it is highly
recommended to double check the actual effects. Due to that fact, indent manipulations are
always executed level by level. This way it is possible to review the actual results of an indent
manipulation step before the next change is executed.

Be aware:
It is not possible to ...

... increment the indent of a leaf item.

... increment the indent of an item beyond the 4th level.

... decrement the indent of a root item.

To increment (decrement) an elements indent

1. Scroll the checklist area to display the group that contains the item that is about to be
moved.

2. If the target group is collapsed, expa nd it to reveal its items.

3. Click on the right or left pointing arrow icon at the right-hand side of the box that represents the element that
you want to move.

4. The elements of the group are immediately reorganized to match the new hierarchy.

Once a checklist is opened within RayQC and the Checklist Editor mode is active, it is possible to
add new groups to the checklist area.

To add a group

1. Scroll the checklist area to display the desired target position of the new group object.

2. Move the mouse pointer to the Toolbar area on the right, and click on the group icon.

3. Keep the left mouse key pressed and drag the new group to the checklist area in the middle.
An indicator bar is shown, pointing to the expected position of the new group. If no indicator
bar is shown, the current mouse pointer position is not a valid target area.

4. As soon as the desired position is marked, drop the group by releasing the left mouse key. The
checklist content is updated with the new group. The index values of all later groups are
updated to match the new container collection.

Once a checklist is opened within RayQC and the Checklist Editor mode is active, it is possible to
remove groups from the checklist sequence.
A checklist has to have at least one group, thus deleting the last group from a checklist is not

160User Guide RayQC 6.2

Checklist Structures

possible.

Be aware:
Deleting a group simultaneously deletes all elements that have been nested inside the
group, as well as all conditions pointing to these elements.

161User Guide RayQC 6.2

Checklist Structures

To remove a group

1. Scroll the checklist area to display the group that contains the item that is about to be
deleted.

2. If the target group is collapsed, expand it to reveal its controls.

3. There are 2 options to delete the item:

- Right-click on the item and select Delete from the context menu
- Left-click on the item and press the Delete key on your keyboard

4. Within the confirmation dialog, review the list of affected conditions and elements to make sure the group
deletion does not cause unexpected side-effects.

5. Click on “YES, REMOVE” to delete the group, or click on “DO NOT REMOVE” or CANCEL to abort the deletion.

Clicking “YES, REMOVE” automatically closes the confirmation dialog, removes the selected group from the
checklist and updates both items with conditions pointing to now deleted group elements as well as the
index values of all groups with a later position.

Note:
Please make sure to save the changes made to the checklist structure to keep them
permanently. If the changes are not saved, closing the checklist file leads to the loss of
all new settings!

Both RayQC checklist interface modes, Checklist Viewer and Checklist Editor, provide a context
menu for elements, which is displayed when a user right-clicks an elements display box.
Especially when a checklist editor tests and re-adjusts his creation, it saves a lot of annoying
scrolling and source revision effort to use these direct links and functions.

The Element Context Menu within the Checklist
Viewer

Reset Elements (Group)

This context menu option when clicked upon, resets all elements of the current group to the
pre-execution state.. The option is initially disabled, when the checklist has not been executed.

Be aware:
Resetting an item may cause subsequent items to be reset as well, for example those
who have conditional statements or result value dependencies related to the currently
reset elements. Double-check the checklist status indicators after a reset action to get a
hint regarding missing item results.

162User Guide RayQC 6.2

Checklist Structures

Run Plug-Ins (Group)

This option when selected by right clicking on a group, runs all the plug-ins which are associated
with an element of the current group.

The Element Context Menu within the Checklist
Editor

Indent

This context menu option indents the selected element to the right. This option is disabled for Group elements
and for the elements which are already indented to the last possible position. For example if in a checklist there
are 2 elements, item 1 and item 2, at index position of 1 and 2 respectively. It will only be possible to indent the
second element once. Instead of using this option from the context menu, users can also indent an element by
selecting it and then using shortcut Ctrl+Right.

Unindent

Contrary to the indent option, the Unindent option moves the selected element horizontally to the left by
removing the last digit of the index value and increasing the second last by 1. For example: Element 1.1.4
becomes element 1.2 when it is unindented.
It is not possible to unindent a group element and an element which is already at its highest possible horizontal
index value. For example an element at position 1 cannot be unindented.
This behavior can also be achieved by selecting an element and using the short cut key: Ctrl+Left.

Delete

As the name says, this option is used to delete an element from the checklist. Please note that a checklist must
have at least one group and an element within that group. Hence it is not possible to delete the last group and
the last element within that group from the checklist. A user can select an element and use the keyboard key
Del to achieve the same.

Properties
The properties tab groups general checklist settings into one view. Properties defined here take
effect on any project file saved from the template.

Checklist Title

The checklist title is saved directly within the checklist template XML structure. It is an arbitrary
alphanumerical string, displayed within the application title bar whenever the checklist project
is opened.
The default value for newly created checklist templates is simply "Checklist Title".

163User Guide RayQC 6.2

Checklist Structures

Tip:
The title cannot only be edited from this view, but from any Checklist Editor tab. The
title is displayed above the actual tab content, and may be edited by a click on the edit
icon at its right-hand side.

164User Guide RayQC 6.2

Checklist Structures

Checklist Description

The checklist description should provide information about the purpose of the checklist. What is
actually evaluated by the elements? Is there special information or resource material required to
evaluate the elements correctly?
Since the description is directed towards the checklist structure, it is saved within the overall
XML structure of the checklist template.

It is possible to format the description text by using special markup tags. Please refer to the
topic Formatting Markup Options for further details.

Report File Naming Format

The report file naming format determines the standard file name generated when users export
project data from the internal RayQC .rqcp file type into .docx, *.pdf, or .html. Besides static
strings, users have the option to use checklist specific variables within the naming format string.

The default format definition already contains the title variable. To define a variable within the
format string, the variable keyword has to be encapsulated with a leading and trailing hash key
(e. g. #title#).

As for now, the following list of variables is available for report file naming format definitions:

V ariable Content Example

#title# The checklist title "Checklist title"

#date# The current date (yyyy-mm-dd) "2015-04-01"

#status# The current project status
(passed, failed or not finished)

"passed"

#bypass# The bypass status of the checklist
result (regular or bypassed)

"regular"

Reports generated from a project give a one time snapshot of a specific evaluation status for the
underlying check routine. Therefore, the given format string is saved within the checklist header
section of the underlying XML structure.

Tip:
Use the FILE button from the Main Toolbar above the Editor area, and select Create
Report to generate a report file.

Allow Bypass

The bypass option allows evaluators to bypass the final result of a checklist run. In some

165User Guide RayQC 6.2

Checklist Structures

exceptional cases it might be required to override the original evaluation result manually (e. g.
define a failed evaluation run as passed, even though some partial results may differ from the
expected results). RayQC offers a bypass option for this purpose within projects if the Allow
bypassing this list checkbox has been activated for the checklist.

The legitimacy of a bypass usually depends on the overall scope of the checklist evaluation
procedure. Therefore the bypass option setting is not stored within the individual, project-
specific part of the checklist, but as an attribute of the checklist header within the XML core
structure itself.

Due to the same reasons, the Bypass message property is also saved as part of the checklist
core structure. This advice is intended to give instructions regarding the circumstances that
allow, or even demand, a bypass. The bypass message is a direct element of communication
between checklist designer and checklist evaluator.

Please refer to the Checklist Viewer section for details on how to accomplish a result bypass for a
specific checklist project evaluation result.

Supporting Files

What are supporting files?

Sometimes it is necessary to enrich checklist templates with more information than can easily
be handled by simple textual descriptions for groups and elements. Supporting files are a
decent way for checklist editors to add PDF or RTF documents as help content and PNG images as
illustrations.
Whilst each checklist element may be equipped with a specific help file, images may be used
freely within checklist, group and element descriptions by using the markup options for these
properties.

The benefit of organizing supporting files in a separate dialog is reusability: Once a supporting
file has been added to the checklist, it may be utilized as often as the checklist editor sees fit.
This is especially handy in those cases, where the same supporting file has to be provided for
several elements or groups with conditional availability during the actual checklist evaluation
run. The file resources are stored once (directly within the checklist container), and referenced as
often as required. By providing a freely usable pool of supporting files it is possible to keep the
overall file size of RayQC checklist containers at a necessary minimum.

View organization

Since help files and images are stored separately within checklist template containers, they are
managed by separate interfaces: the upper control element group within the Supporting Files
view provides the controls to add and remove help files, whilst the lower group provides the
very same functionality for images.

Each set of controls consists of

166User Guide RayQC 6.2

Checklist Structures

A button to browse for a new file / image that has to be added

A button to remove the currently selected file from the checklist container

A list of currently available files

The list comes along with a special display style schema for the contained items:

o Grayed out icons symbolize items that have been added to the checklist, but are at present not used in
relation to a specific element (for help files) or description field (for images). Additionally, they are marked
with “NOT USED” at the right-hand side of the document.

o Fully solid icons symbolize an uploaded and used item.
o A light orange background and black font color are applied when the mouse pointer hovers over an item.
o A dark orange background and white font color are applied when an item is selected by a left-click.

To add supporting files to a checklist

Adding help files

1. Click on the Add file button above the list of already uploaded items

2. Within the displayed Open dialog window: Browse the file system for the desired file.
Please note that the default file type filter is set to RTF. If a PDF has to be added, users have to
switch the filter to display PDF files on the file system. Other file types are not supported.

3. Select the file with a left-click.
Please be aware that a help file name has to be unique within the supporting files that are
available for a checklist. Thus, it is not possible to add a file that has the same name as an
already present help file item. The check for duplicate file names is not case sensitive.

4. Click on the Open button at the lower right corner of the dialog.

5. The dialog is closed and the file is added to the list of already uploaded help files.
Since the file is not related to an element yet, it is displayed in the grayed out state.

167User Guide RayQC 6.2

Checklist Structures

Adding images

1. Click on the Add image button above the list of already uploaded items

2. Within the displayed Open dialog window: Browse the file system for the desired file.
Please note that the default file type filter is set to PNG. Other file types are not supported.

3. Select the file with a left-click.
Please be aware that a help file name has to be unique within the supporting files that are
available for a checklist. Thus, it is not possible to add an image that has the same name as an
already uploaded item. The check for duplicate image names is not case sensitive.

4. Click on the Open button at the lower right corner of the dialog.

5. The dialog is closed and the PNG is added to the list of already uploaded images.
Since the image is not used within a description text yet, it is displayed in the grayed out state.

168User Guide RayQC 6.2

Checklist Structures

To remove supporting files from a checklist

1. Select the item within the list of help files or images
2. Right-click the item and select Delete from the context menu

or
Left-click the item and click on the Remove selected button above the item type list

3. The item is immediately removed from the supporting files pool.

Be aware:
It is not possible to add help files or images until they have been uploaded to the stock of supporting
files.

To use supporting files within a checklist structure

Be aware:
It is not possible to add help files or images until they have been uploaded to the stock of supporting
files.

Using help files
1. Open a checklist within the Checklist Editor interface.

2. Go to the Steps And Actions tab.

3. Select the element that has to be extended with the help file from the checklist structure.

4. Open the Properties tab of the element within the details pane.

5. Select the desired help file from the Help file drop-down selector.
The checklist element display mode within the Checklist Viewer is immediately updated with
a question mark icon.
Clicking on the icon opens the related help file.

Using images

1. Open a checklist within the Checklist Editor interface.

2. Go to the Steps And Actions tab.

3. Select the group or element whose description text that has to be extended with the image from the
checklist structure.

169User Guide RayQC 6.2

Checklist Structures

4. Open the Properties tab of the element within the details pane.

5. Use the markup for image integration to insert the illustration as an inline element to the description text. File
names do not have to be entered case sensitive towards the original file name displayed within the
supporting files pool.

For example:
An image with the name DemoImage.png has to be integrated into the description text "Lorem ipsum
dolor sit amet" like this:
Lorem ipsum [image]DemoImage.png[/image] dolor sit amet

6. The description text displayed within the Checklist Viewer and Editor is immediately updated to display the
image at the defined position.

Plug-Ins

Local External Plug-Ins

Local External plug-ins add new functionality to the checklist processing by adding PowerShell
based or DLL based plug-ins to RayQC.As compared to the external global plug-in, local external
plug-ins are stored inside the checklist file and their functions are only available to the checklist
containing it. After loading a checklist and opening the editor the functions of internal plug-ins
may be found in the list of plug-ins in the toolbox on the left side.

Be Aware:
To load a plug-in RayQC must be licensed to use it. The Standard Edition of RayQC is not
able to process PowerShell based plug-ins. The Enterprise Edition is needed to run
these plug-ins.

For DLL based plug-ins, a valid plug-in license is needed. This can be obtained from
Raynet.

Note:
For more information on handling external plug-ins and benefits/drawbacks of using
external local and global plug-in, refer to the plug-ins section of the Settings chapter.

The plug-in Manager Dialog

Both local and global plug-ins use the same dialog for plug-in management. The plug-in
manager for local plug-ins is located under the plug-ins tab of the checklist editor.

Be Aware:
Even when using the Standard Edition of RayQC the plug-in manager allows to add/
remove PowerShell plug-ins. But keep in mind that such plug-ins can’t be loaded by the Standard
Edition and as such they won’t be displayed in the toolbox. The same is true for non-licensed DLL
based plug-ins..

170User Guide RayQC 6.2

Checklist Structures

Add a new PowerShell plug-in

1. Press the button labelled ‘Add PowerShell plug-in’.

2. In the following dialog select the directory that contains the plug-in files (‘manifest.xml’ and
all script files that are used by the plug-in).

Remove a PowerShell plug-in

1. Select the plug-in to remove in the list.

2. Click ‘Remove selected’.

OR right click the plug-in to remove and select delete from the context menu.

Be Aware:
Local plug-ins that are used by a checklist that is currently loaded cannot be removed.
Remove all usages of the plug-in to allow the deletion of the plug-in.

Add a new DLL plug-in

1. Press the button labelled ‘Add DLL plug-in’.

2. In the following file dialog select the plug-in DLL.

Remove a DLL plug-in

1. Select the plug-in to remove in the list.

2. Click Remove selected.

OR right click the plug-in to remove and select delete from the context menu.

Plugins tab within the Checklist Editor

171User Guide RayQC 6.2

Checklist Structures

The Plug-In Manager Dialog

Post Processing

What is post processing?

It is quite likely that RayQC is used as a tool that is integrated into RayFlow. This means that
evaluations are commonly triggered from a RayFlow server. In order to provide bidirectional
communication, there is not only a way to get data from RayFlow into RayQC, but also to return
information (report files and updated values for RayFlow data fields) back to the RayFlow server.
In order to standardize and automate this conversation as far as possible, users may define
certain post processing tasks. If post processing itself is activated for a checklist, RayQC checks
for condition fulfillment, and executes the post processing actions if one of the active conditions
is meet.

Post processing may either be triggered manually by using the post processing button from the
Swipe bar of the Checklist Viewer, or automatically as extension of a Run All procedure
execution. The latter option is the required one for fully automated checklist evaluations.
RayFlow triggers the checklist run including the automation parameter, and RayQC automatically
responds with the information defined within the post processing section.
However, it is also handy for users to be able to upload checklist evaluation results to RayFlow
themselves, since not all checklists may be fully automated. This is where the button for post
processing execution kicks in.

Be aware:
Post processing can only operate successfully, if the current evaluation session has a
valid RayFlow connection. If no pa ra m eter injection is given and the user has not
manually authenticated to RayFlow, there is no valid target for the data RayQC has to
send. The result is an error message, which will be displayed if post processing fails due
to missing connectivity.

172User Guide RayQC 6.2

Checklist Structures

To enable or disable Post Processing options for a
checklist

The default state of the post processing options, which is given for example when a user calls
the POST PROCESSING tab for a specific checklist for the first time, is disabled.

To enable post processing, users have to activate the Enable post process actions. Further adjustments are
required to fine-tune what has to be executed and under which circumstances RayQC executes it. Setting
Enable post process actions to No does not delete the settings defined so far, but simply
deactivates the execution of the defined actions and hides the post processing option controls. It
does not matter how often a user enables and disables the post processing, the latest settings
are preserved and become editable with every post processing enabling.

173User Guide RayQC 6.2

Checklist Structures

Post Processing Options

If post processing is enabled, users may decide about the following settings:

RayFlow Package

Stores an ID of a RayFlow package to which data from post processing actions will be saved. After
clicking on the browse button [...] users will be able to select a package using the common
RayFlow pop-up window.

Execution Conditions

As outlined above, there are several triggers that may cause RayQC to initiate post processing.
The first step of post processing is to check whether the conditions for further activity execution
are meet:

Execute on checklist result PASSED
If a checklist evaluation has led to the overall result PASSED, this condition is fulfilled
(=evaluates to true).

Execute on checklist result NOT PASSED
If a checklist evaluation has led to the overall result FAILED, this condition is fulfilled
(=evaluates to true).

Execute on checklist result NOT FINISHED
If a checklist evaluation has not led to a PASSED or FAILED overall status, this condition is
fulfilled (=evaluates to true).

If 1 of the enabled conditions is fulfilled, actions and data field updates are actually executed
according to the settings described below:

Actions

Activate the Create and upload report to RayFlow checkbox to automatically generate a
report and export the resulting file to RayFlow. Since the report generation is not triggered
manually, RayQC applies the settings defined within the currently active report profile for the
report generation.

If the checklist evaluation has been triggered by RayFlow, and an explicit report profile has been
forced by parameter, RayQC applies the rules defined for that specific report profile.

RayFlow Data Updates

Besides simply sending a report file to the RayFlow database, it is also possible to update
dedicated fields of the package order object that is connected to the current checklist run.

174User Guide RayQC 6.2

Checklist Structures

Note:
Please remember that RayFlow connections may be defined either by the currently
active Ra yFlow connection profile, or by injection via com m a nd line parameters used to
initiate the active RayQC session.

The post processing configuration interface allows defining a set of RayFlow fields that will be updated with
specific values. To demand a field update, users have to fill in the field name into the left column (RayFlow Field
Name) of the RayFlow Data Updates control elements matrix, and the value that has to be set into the
corresponding Value to transmit field.

Possible values for data field updates are:

Predefined RayQC checklist object variables:
o #title# is replaced by the checklist title
o #date# is replaced by the current date (YYYY-MM-DD)
o #status# is replaced by the checklist result (PASSED, FAILED, or NOT FINISHED)
o #bypass# is replaced by the bypass status of the checklist result (regular or bypassed)

Free text entered by the checklist designer.

A mixture of both, free text and predefined variables

Checklists on the File System
Checklist template files (*.rqct) are usually stored at a file system location that is within reach of those users
who have to work with them later. This means that storing checklists on a shared network location requires that
checklist evaluators have access to that share in order to be able to evaluate the checklists as projects later.

As outlined before, there are two types of RayQC related files: RQCT and RQCP.
The first one is a ZIP containter containing:

- File checklist.xml: contains the different steps of the checklist
- File postprocess.xml: contains the data from the “Post Processing” tab
- Folder Help: contains the help files from the “Supporting Files” tab
- Folder Images: contains the images from the “Supporting Files” tab
- Folder Resources: contains the resources from the “Supporting Files” tab
- Folder plug-ins: contains the plug-ins from the “plug-ins” tab

The second type is also a .zip container that contains the same information as the .rqct file, along with: File
state.xml: contains the current evaluation status of the actual project instance for testing

Formatting Markup Options
Some checklist properties may be equipped with formatting markup tags to provide a handy set
of options for information structuring.
Tags are evaluated within the following checklist properties:

Checklist description (in the Properties tab of the checklist)

175User Guide RayQC 6.2

Checklist Structures

Group description
Element description

This list of tags may be used:

It is common to mark some text to be [bold]bold[/bold]. Along with the line break tag, this
markup allows to define headlines and build logical blocks of information.

Text with [italic]italic[/italic] style usually indicates quotes or references to external
documents.

Sometimes it might be required to define areas with [underline]underlined[/underline] style.

Text with a specific [red]font color[/red] may be used to emphasize very important aspects of
the description, or mark result specific information.
RayQC accepts red and green as font color options.

Text may be equipped with line[br]breaks.
The break tag is the only one that does not require an opening and closing markup string.

176User Guide RayQC 6.2

Checklist Structures

177User Guide RayQC 6.2

Standard Checklist Procedures

Standard Checklist Procedures
Now that the overall structure of checklists has been outlined, it is time to give some details
regarding the usual procedures users have to perform on RayQC checklist files.

Create Checklist Templates
Since direct XML source fumbling is finally a pain of the past with the latest RayQC release, this
user manual will not give detailed instructions on checklist creation via the XML editor. The
appendix section contains information about the XML schema and some basic usage samples.

To create a new checklist template

1. Launch RayQC, or - if it is already up and running - navigate to the dashboard.

2. Click the create checklist tile

3. Define the name and location for the new checklist template file (.rqct).
Please keep in mind, that it is very likely that other users will require access to the checklist
template in order to evaluate the checklist as project later. Therefore, it is recommended to
use a shared location that evaluators have access to.

4. The template is immediately created with the default settings and contents, and opened for
manipulation within the Checklist Editor interface.

Be aware:
RayQC automatically opens the template, which resides within the session memory.
Changes to that file are not permanent until any of the provided Save functions is used.
Be aware that saving as project file keeps the current checklist structure and evaluation
status information, whilst saving as a template only saves the changes affecting the
checklist structure (including plug-ins, supporting files and post processing actions) -
evaluation status information is not stored within template files. Please refer to the
objects section for further details.

5. Adjust the checklist properties according to your requirements.

6. Add groups as required, and define basic group properties as well as details such as conditions
by using the group controls. Once the group container itself is prepared, it is time to add some
actual checklist items to it, edit their basic properties, define required options, and use the
controls provided per element to adjust the tree structure of group items.

To add objects to a checklist, drag one of the object icons for groups or checklist items from the toolbox on
the left-hand side of the Checklist Editor interface to the checklist area in the middle. Drop the new objects at
the desired target position and adjust their default settings towards your individual needs.

7. If help files or other resources, such as images, are used within your checklist definitions, make sure to add

178User Guide RayQC 6.2

Standard Checklist Procedures

them using the file managers that can be found under the Supporting Files tab.

8. If conditions are part of your group and element definition, it is recommended to use the Check Conditions
button from the Swipe bar as soon as your checklist structure is complete. This button can be found in the
Checklist Viewer. Switch to this view by clicking the View this checklist button at the bottom left. If there
are issues regarding the conditional statements that have been defined, solve them and repeat the Check
Conditions procedure until all issues are cleared.

9. Save the changes to the checklist file by using the Save or Save as option from the File menu. The disk
symbol in the upper left corner in the title bar can also be used as a shortcut for saving the current checklist.

Be aware:
Simply using Save will automatically detect whether evaluation status data is in the
current project and will automatically save the current checklist as a project file
(*.rqcp) including the state to ensure the saving of the result. If there is no evaluation
data the checklist template will be saved as a template (*.rqct) file.

Evaluate Checklist Projects
Evaluating a checklist project means to open a checklist template with the Checklist Viewer and execute the test
steps one after another. To save the evaluation results beyond the current work session, it is required to save the
checklist as a project file (.rqcp). This is automatically done if the standard command Save is used.

To evaluate a checklist project

1. Launch RayQC, or - if it is already up and running - navigate to the dashboard.

2. Click the open checklist tile to load an existing checklist template.
As an alternative, use the open project tile to go on with the evaluation procedure for an
already existing project.

3. Select the required template or project file from the file system, using the system browser
dialog displayed after clicking one of the tiles mentioned above.

Note:
If the checklist evaluation is triggered by a RayQC tool integration in RayFlow, the first
three steps are obsolete, since they will be triggered automatically by RayFlow.

4. The file is immediately opened for evaluation within the Checklist V iewer interface.

5. Walk through the test steps one by one and note the results to make sure the sequence of
result provision is kept as demanded by the checklist structure.

6. The type of result information required to complete a test item result depends on the item
type:

a. Information items do not require any user feedback at all. They are designed to provide information, e.g.,
about the test scenario or environment requirements.

b. Data Field items expect a textual execution result to be documented. Simply enter the result into the text

179User Guide RayQC 6.2

Standard Checklist Procedures

input field provided below the step description.
c. Checkpoint items expect a boolean Yes or No result information. The answer that is defined as the

expected, correct test result, is displayed in a bold font color. If neither Yes nor No is bolded, the result of
this test item is not used for the overall calculation of the checklist result.

 d. Multi-option items require selecting one of the offered result options.

7. Double-check the results provided for checkpoint and multi-option items, since they are
common references for dynamic checklist content control. The correct checklist procedure
may very well be determined by the results defined for these types. Therefore, it is of high
importance to give the correct results during the first checklist run, since later corrections
may lead to additional result update measures.

8. Take a look at the icons presented within the definition of the single test steps:

a. If a question mark icon is shown: Click it to read the additional information provided within
the linked help file.

b. If an arrow icon is shown: Click it to run the plug-in that has been attached to the checklist
element

9. Make sure that all status indicator boxes from the task bar are displayed with a zero in the upper left corner
and a green background color. If any of these boxes looks different, there are still missing test results and the
overall checklist result will be NOT FINISHED. The checklist evaluation is complete when the status ribbon at
the right-hand side of the task bar displays either PASSED or FAILED.

10.Save the result of your work in order to keep the current checklist result permanently. To do
so, select one of the options available from the File menu:

a. Option Save: Saves the changes to the currently opened RayQC project file
b. Option Save as: Allows to save the changes in a newly created project file or to overwrite any existing

project file.
c. RayFlow - Upload Report: Creates the report and uploads it to the RayFlow server
d. RayFlow - Update data fields: Based upon the post-processing configuration, the “Update data fields”

button updates the relevant data fields in the RayFlow project

11. Depending on the demanded test reporting and RayFlow connection, it may be required to generate a
checklist project report for local storage or transfer to RayFlow.

a. To generate a report for local storage: Open the File menu and select Create Report. The displayed dialog
requires target location, file name and report profile selection. Click Create to generate the report file at
the selected destination.
To create or change a report profile, go to Settings – Report Profiles.

b. To generate a report for RayFlow storage: Open the file menu and click on RayFlow. In the displayed dialog
click on the tile that is labelled with Upload Report. After pressing the button a dialog opens to enter the
file name (no file extension needed). Uploading of the report to RayFlow will use the active report profile
from the settings screen for the report generation. The file name suggestion for report creation is based on
the checklist property 'File name pattern'.

Create Checklist Evaluation Reports
Working with RayQC checklist templates and projects is fine for checklist editors and evaluators,
but not a handy solution for result communication with others that do not have access to RayQC.

180User Guide RayQC 6.2

Standard Checklist Procedures

To provide decent communication material, export functionality is integrated into both core
interfaces: Checklist Viewer and Checklist Editor.

Reports are always based on the current project status as it is present within the temporary
session storage. When the project file itself is updated, all former reports remain unchanged, and
therefore represent an outdated project status.

To create a checklist evaluation report

1. Launch RayQC, or - if it is already up and running - navigate to the dashboard.

2. Click the open checklist tile to create a new project based upon an existing checklist
template.
As an alternative, use the open project tile to go on with the evaluation procedure for an
already existing project.

3. Select the required project file from the file system, using the system browser dialog
displayed after clicking one of the tiles mentioned above.

181User Guide RayQC 6.2

Standard Checklist Procedures

Note:
If the checklist evaluation is triggered by a RayQC tool integration in RayFlow, the first 3
steps are obsolete, since they will be triggered automatically by RayFlow.

4. The file is immediately opened for evaluation within the Checklist V iewer interface.

5. Depending on the demanded test reporting and RayFlow connection, it may be required to
generate a checklist project report for local storage or transfer to RayFlow.

a. To generate a report for local storage: Open the File menu and select Create Report. The displayed dialog
requires target location, file name and report profile selection. Click Create to generate the report file at
the selected destination. To create or change a own report profile, go to Settings – Report Profiles.

b. To generate a report for RayFlow storage: Open the file menu and click on RayFlow. In the displayed dialog
click on the tile that is labelled with Upload Report. After pressing the button a dialog opens to enter the
file name (no file extension needed). Uploading of the report to RayFlow will usse the active report profile
from the settings screen for the report generation. The file name suggestion for report creation is based
on the checklist property 'File name pattern'.

Edit Checklist Templates
When a checklist template is opened in RayQC, it is opened within the Checklist Viewer, which
allows direct evaluation steps to be taken. In order to actually edit the underlying template, the
following procedure has to be executed:

To edit a checklist template

1. Launch RayQC, or - if it is already up and running - navigate to the dashboard.

2. Click the open checklist tile to create a new (temporary) project based upon an existing
checklist template.

3. Select the required template file from the file system, using the system browser dialog
displayed.

4. The file is immediately opened within the Checklist V iewer interface.

5. Click on the "Edit this checklist" button on the left side of the swipe bar below the actual
checklist content.

6. The checklist template structure is displayed, ready for manipulation:

a. Add new groups
b. Edit basic group properties
c. Remove groups
d. Add new items to groups

182User Guide RayQC 6.2

Standard Checklist Procedures

e. Edit basic item properties
f. Edit element and group properties by using the property section on the right side (e. g.

change conditions, options, etc.) or change their indention.
g. Remove elements

7. Switch to the Checklist Viewer and review the effects the changes actually have on the
behavior and content display of the checklist.
Remember that changes to the element positioning and conditions of elements and groups
may lead to unexpected results.

8. When the checklist structure has been adjusted towards the desired state, the changes have to
be saved. Saving can either mean to overwrite the existing checklist template, or save as a
new one. Both methods start with clicking on the File menu, and selecting Save as. Select
"RayQC Templates (.rqct)" as file type.

a. To create a new checklist template file:

i. Browse to the desired target destination and enter the name of the new file.
ii. Click Save to create the new checklist template.

b. To overwrite an existing template file:

i. Browse to the location of the template file that has to be replaced by the current
checklist template structure

ii. Click on the file name of the template file that has to be replaced
iii.Click Save.
iv. Within the appearing confirmation dialog, click Yes to actually overwrite the existing file.

Be aware:
Simply using Save will automatically detect whether evaluation status data is in the current project or
not. If evaluation status data is available, RayQC will automatically save the current checklist as a
project file (‘*.rqcp) including the state to ensure the saving of the data. If there is no evaluation data,
the checklist will be saved as a template (*.rqct) file. If you only want to save the checklist without
the evaluation status data, use “Save as” – “Save as Checklist” from the file menu.

Delete Checklists
Deleting a checklist is actually not a task that is performed directly from within RayQC. Even though it is possible
to remove checklist projects or templates from the Recent list on the dashboard, this does not delete the
original files from the system. To delete a checklist, users have to use the standard Windows functionality
provided by the system explorer interface. This is an intended limitation to prevent data loss.

183User Guide RayQC 6.2

Standard Checklist Procedures

184User Guide RayQC 6.2

Plug-Ins

Plug-Ins
With the increasing complexity of a checklist, its processing can sometimes become very time-consuming. The
RayQC plug-in interface is designed to provide a way to automate and streamline checklist evaluation
procedures in order to avoid issues such as missing test standards, handling errors, and time constraints.

Plug-ins are capsuled, reusable logic units, accessible from RayQC checklists by direct function
calls including required in- and output parameters. plug-in parameters can be derived from and
injected into element results, which even allows to build conditional statements for checklist
workflow control depending on plug-in execution results.

Therefore, advanced users of RayQC will in any case have to deal with plug-ins, understand how they are
designed and integrated, know how to utilize internal ones, and finally be capable of creating new, external
plug-ins for custom testing purposes.

The following sections are separated into logical units to provide insight into the RayQC plug-in
technology from different angles:

Plug-in types
Using plug-ins in checklists
Documentation of built-in RayQC plug-ins
Requirements for custom plug-in preparation
Additional information is provided within the Appendices of this document
Troubleshooting advice for plug-in usage

Plug-In Types
Talking about plug-in types in a RayQC manner means to deal with criteria such as plug-in author and plug-in
location. According to these decisive properties, there are standard plug-in types:

Internal Plug-Ins

Directly integrated with the RayQC application.
Their functionality is static, and can therefore not be changed but only called by users.
Raynet is responsible for the provision of backwards-compatibility. Announcements regarding changes are
given as part of the Release Notes published for each new product release.

External Plug-Ins

RayQC supports two kinds of external plug-ins: DLL and PowerShell
Their functionality is provided by RayQC users and can therefore be changed individually according to your

185User Guide RayQC 6.2

Plug-Ins

needs
Users are responsible for the provision of backwards-compatibility and internal version management.
Local external plug-ins are stored in the /plug-ins/ folder within the checklist container file.
Global external plug-ins are stored in the /plug-ins/ folder within the RayQC application installation
directory (usually something like C:\Program Files (x86)\RayQC\). They can be used by any checklist
run from the local RayQC instance.

Summary: Plug-In Availability

Internal plug-ins are available for all checklists.
Local external plug-ins are available for one specific checklist. In order to make them
available for several checklists, their resource files have to be copied directly into the checklist
container file.
Global external plug-ins are available for all checklists that are run from the RayQC instance
that owns the plug-ins subdirectory which includes the plug-in resources within its
application installation directory (e. g. C:\Program Files (x86)\RayQC\)

Using Plug-Ins in Checklists
Plug-ins have to be configured during the creation of a checklist and will be executed during the
evaluation of a checklist. The following illustrations show on a generalized level, how these
procedures are intended to be aligned.

Plug-in configuration during checklist creation

186User Guide RayQC 6.2

Plug-Ins

Plug-in usage during checklist evaluation

187User Guide RayQC 6.2

Plug-Ins

Tip:
There are sample templates for plug-in usage, delivered along with the RayQC
application resources. As soon as RayQC is installed, samples are stored within the
RayQC program folder (e. g. C:\Program Files (x86)\RayQC\Samples\Sample
Checklist.rqct, which is designed to present some functions of the RayQC plug-ins,
along with their configuration options).

Configuration during Checklist Creation

Tip:
There are sample templates for plug-in usage, delivered along with the RayQC
application resources. As soon as RayQC is installed, samples are stored within the
RayQC program folder (e. g., C:\Program Files (x86)\RayQC\Samples\Sample
Checklist.rqct, which is designed to present some functions of the RayQC plug-ins,
along with their configuration options).

The following procedure outlines the standard requirements for plug-in configuration. Additional
information regarding the relevant activities for custom plug-in prepa ra tion is provided in a later
section.

1. Plug-ins are triggered from checklist elements, therefore the initial starting point for any plug-
in usage is to crea te a checklist that contains at least one element that can incorporate a plug-
in: a Checkpoint, Data Field, or Multi-Option element. Please note that it is not possible to add
plug-ins to Information elements, as the return value of the plug-in function execution
updates the element result content, and Information elements do not have a result value at
all.

2. Open the checklist template file for manipulation within the Checklist Editor tab Steps and
Actions.

3. Users will later trigger plug-in execution from the box representation of an element (within
the Checklist V iewer). Therefore, focus the element that should later contain the plug-in
trigger button by clicking on it. Activate the plug-in tab of the element within the Details
pane on the right-hand side.

4. Browse the plug-in list at the left-hand side of the editor interface. Expand the list of functions
per plug-in by clicking on the arrow icon left of the plug-in name. Once the right function is
found, drag it to the desired checklist element within the checklist structure column in the
middle of the application screen (or directly to the Details pane's plug-in tab of the currently
selected element), and drop it there.

If it is not possible to drop the function at the desired target element, there is a mismatch
between the supported parent element types of the plug-in function and the type of the
target element. Please refer to the Interna l plug-ins section to research the valid function /
element combinations for internal plug-ins. If external plug-ins are used, the definition of
allowed target elements per plug-in function can be retrieved from the plug-in manifest file.

188User Guide RayQC 6.2

Plug-Ins

Please note that each checklist element (except for groups and information elements)can be
extended with zero or one plug-in functions. It is not possible to add two or more functions to
the very same checklist element.

5. Once a plug-in function has been added to a checklist element, the functions details are
displayed within the plug-in tab of the details pane for the checklist element. These details do
not only contain static information about plug-in name, plug-in version, and function name,
but also the controls for individual adjustments of input parameter values, execution options,
and result handling settings.

6. Please refer to the plug-in documentation for further details on the list of parameters for a
specific function. The docum enta tion for interna l plug-ins is available within this document.
The specifications for custom (external) plug-ins have to be provided by the plug-in author.

The following example uses the internal File plug-in as base for a configuration description.
The specific function that is about to be executed is GetProperty, which allows retrieving
either the version or size property of a specific file. (Once the property is read, another plug-in
function may be used to evaluate the result. To compare the property with a specific value,
users may add another checklist element and use the Logic plug-in function CompareValue.)

7. Input parameters can be defined by manually entering a static value or by reading the current
value of another checklist element.

To use the value of a checklist element as input parameter value, users have to drag the
checklist element from the checklist structure area in the middle of the screen and drop it into
the desired plug-in function input parameter control within the details pane.

Please be aware that this kind of relation can only be established if the checklist element that
is used as parameter value has already been evaluated when the current plug-in is executed.
This means that it is not possible to use an element that has a later position within the
checklist element structure than the element that contains the plug-in itself. For the situation
displayed within the screenshot below: Element 1.1 may be used as input parameter
reference for element 1.2 or any later element, but 1.2.1 may not be used for 1.1 or 1.2.

189User Guide RayQC 6.2

Plug-Ins

The selected element 1.2 has been extended with a plug-in function. The input parameter File is
defined by the value stored within another checklist element: 1.1.

The functions of the File plug-in on the left hand side are expanded and contain the GetProperty
function, which has been added to element 1.2. A look at the details pane on the right reveals the
currently established usage connection, as the plug-in and function name of the related logic are

displayed here.

8. Let us take a closer look at the input parameters for the GetProperty plug-in function:

File
The name and path of the file whose property has to be checked. In our example we have an element with
the index number 1.1 as reference value for this parameter. Element 1.1 itself is equipped with a plug-in
function that allows selecting a file via a system browser dialog: FileOpenDialog. Therefore, once the
plug-in of element 1.1 is executed, its value is set to the name and path of the selected file.

Property
The file name and path described above is used to retrieve the file property Version as result of element 1.2.
The input parameter property has two options users may select from: Version and Size.

9. Now that the ingoing data flow is defined, a question might arise: Where does the result of the plug-in
execution go to? Well, the current definition of internal plug-ins is restricted to allow exactly one outgoing
(result) parameter per function. The return value of the function execution is automatically used as value of
the element that hosts the plug-in function itself.

Therefore, in our example described above, the result of the file property retrieval is written into the Data
Field element 1.2, as well as the result of the FileOpenDialog function execution is written into the Data
Field element 1.1. Within the Checklist viewer, users are able to see the function result as value of the control
item that represents the element. In our example, the file path and the file property are entered into text
input fields.

Executing functions hosted by Checkpoint elements leads to the selection of either Yes or No. (Please keep
in mind that Yes is usually the same as evaluates to true, but evaluates to true may as well be equal to

190User Guide RayQC 6.2

Plug-Ins

No if the expected result of the element has been switched. Please refer to the elem ent type descriptions for
further information!)

The third option for result parameter value indication within the Checklist Viewer is the auto-selection of an
option from a Multi-Option drop-down menu.

Since result values may not be provided in a standardized format, or easily usable for further evaluation, there
may very well be need to format transitions and comparisons. Please take a look into the section about the
internal Logic plug-in and its functions to find out how RayQC can support the individual QA test scenario
requirements.

10.As soon as the configuration is done, the plug-in execution may be tested. To do so, users have to switch to
the Checklist Viewer interface. Please keep in mind to save changes made to a checklist template in the
meanwhile in order to prevent data loss.

11.Within the Checklist Viewer, evaluate the whole set of checklist items until the ones with the plug-in
functions are reached. It is very common that plug-ins require results of prior elements as input parameters.
The plug-in execution would fail if there were missing element results that are actually referred to by plug-in
parameters. Therefore, it is recommended to run through the entire checklist evaluation course to make sure
the parameter call is triggered from a realistic checklist status.

12.From the Checklist Viewer, users may check the existence of mandatory input parameter definitions for the
defined plug-in function executions by using the Validate plug-ins data button from the Swipe bar. If RayQC
encounters any issues, a message is displayed. Clicking on the MORE button reveals details on the erroneous
parameter set. The info message refers to the element by naming the group index, which is represented by a
roman number (e. g., I; II; III), followed by the element index value, which is represented by a period
separated list of Arabic numerals (e. g., 1; 1.1; 2.4.3.1). The combination of these two index values
unambiguously determines the affected element. To solve the stated parameter validation issues, users have
to switch back to the Checklist Editor interface and edit the plug-in parameters of the mentioned elements.

13.However, if the plug-in execution does not run as expected, adjust the configuration, use the
troubleshooting advice provided within this document, contact your local RayQC system administrator, or
send a support request to Raynet: support@Raynet.de.

Execution during Checklist Evaluation

Tip:
There are sample templates for plug-in usage, delivered along with the RayQC
application resources. As soon as RayQC is installed, samples are stored within the
RayQC program folder (e. g. C:\Program Files (x86)\RayQC\Samples\Sample
Checklist.rqct, which is designed to present some functions of the RayQC plug-ins,
along with their configuration options).

How to trigger plug-in execution

Once a plug-in has been integrated into the checklist template file, it may be run from the
Checklist V iewer interface.

mailto:support@
mailto:.de

191User Guide RayQC 6.2

Plug-Ins

Be aware:
Even though it is technically not required, it is highly recommended to save the current
checklist definition before a test run is executed. Especially the integration and
execution of external plug-ins may lead to severe system interferences. Please keep in
mind, that RayQC does not prevent critical script logic to be run as part of external
plug-ins. It is the plug-in and checklist authors area of responsibility to make sure no
harm is caused by their functions on the affected systems.

The representative box for a checklist element contains an arrow icon to indicate plug-in
existence. As soon as the evaluating user clicks this button, the plug-in logic is executed
according to the settings defined within the checklist, the plug-in script logic, and the

current state of the target system, or respectively any other object of investigation within plug-
in reach.

The screenshot below displays some element boxes taken from the plug-ins checklist template
sample. The trigger icons for plug-in execution are shown within checkpoint, user comment, and
comment element boxes. However, it is also possible to integrate plug-in execution into the
interface of multi-option items.

In order to provide correct and reliable execution results, users should evaluate the whole sequence
of checklist items until the one with the plug-in is reached. It is very common that plug-ins require results of
prior elements as input parameters. The plug-in execution would fail if there were missing element results
which are actually used by the current plug-in configuration. Therefore, it is recommended to run through the
whole checklist evaluation course to make sure the parameter call is triggered from a realistic checklist status.

The actual result of plug-in execution depends on the plug-in selected, the function called, the parameters used,
and - of course - the status of the target system that is checked or manipulated by the plug-in logic. Let us take a
look at the Command plug-in example shown below. The Data Field element (1) available from the sample
checklist group "I: Valid path values" is about to call the Registry Editor (regedit.exe) of the local

192User Guide RayQC 6.2

Plug-Ins

machine. With a click on the plug-in trigger button, the configured command line is fired. The file name and full
path to the executable was provided and regedit is started successfully. But how about the other examples? Will
they plug-in execution for element 2 launch the Registry Editor as well?

Yes, it does launch the Registry Editor - but only on those machines, who have C:\Windows\
added to the PATH environment variable. RayQC reads these variables during executable path
resolution.

The same notation would also work for notepad.exe or explorer.exe as long as the underlying
Windows operating system is not highly customized regarding its system settings and default
parameters. Addressing applications in non-standard local or network locations requires to give
the fully qualified path (e. g., C:\Program Files (x86)\RayPack\RayPack.exe to launch RayPack).
The executable whose execution is triggered by element no 3 resides within the RayQC program
directory (typically something like C:\Program Files (x86)\RayQC\), which is by default checked
for a matching file as well. All other plug-in parameters that represent paths have to be given
fully qualified, the Command plug-in is the only exception on this rule.

Run single plug-in vs. run all plug-ins

As outlined before, it is possible to trigger a single plug-in execution with a click on the
rightwards pointing arrow icon which is available directly from the elements box
representation. However, there may be automated checklists, which fully consist of
stacked plug-in-based checks. If these checklists are opened for evaluation, it is faster

and more convenient to use the Run All button from the Swipe Bar below the checklist area.

The sequence of plug-in execution is initially determined at the beginning. When the first
currently available checklist item with an integrated plug-in is reached and executed, the results
are written to the checklist project residing within the session memory. At this point, the group
and item sequence is recalculated in order to be able to consider result-driven changes to the
availability of upcoming checklist objects (please refer to the conditions section for details).

This procedure of

a) plug-in run
b) sequence recalculation according to plug-in run results

193User Guide RayQC 6.2

Plug-Ins

c) proceeding to the next plug-in according to the newly calculated sequence

is repeated until all checks have been run according to the requirements defined by the
checklist template and the actual execution results.

194User Guide RayQC 6.2

Plug-Ins

Be aware:
If a plug-in does not run fully automated, but requires user interaction (e. g. when a
browser dialog invocation is triggered), the next plug-in execution will not be launched
until the execution of the last one has finished (e. g. a file has been selected from a
system browser dialog, or a registry value has been read). However, it does not matter if
the plug-in execution was successful or not, as soon as the triggered function has
terminated, RayQC proceeds to the next checklist plug-in call.

Typical plug-in execution issues

In our example above, the plug-in execution ran flawlessly. Unfortunately, there may be less lucky
circumstances that raise issues on plug-in execution.
For example, when a plug-in logic requires additional resources that are not available, because executing user
does not have sufficient access rights to the affected system parts, a path information is invalid, or the like. If an
external plug-in script is triggered from a checklist, but this plug-in is not present in a known and reachable
location, a Windows Script Host Error message is shown, outlining the reasons for the invalidity of the plug-in
script invocation. There are some troubleshooting hints given later in this document, which may be of help in
such a situation. However, the following screenshot displays a typical RayQC message, caused by an invalid
command name argument (e. g., according to our sample checklist: regedit.dll instead of regedit.exe in
element no 2.)

If a plug-in has not been configured correctly, there may be issues with parameter settings that are incorrect
towards format restrictions, or with missing parameter information that is mandatory for plug-in execution. In
this cases, RayQC usually displays an error message, describing the parameter that actually raised the issue,
along with some helping notes on how to solve it.

195User Guide RayQC 6.2

Plug-Ins

Note:
If the plug-in execution does not run as expected, adjust the configuration, use the troubleshooting
advice provided within this document, contact your local RayQC system administrator, or send a
support request to Raynet: https://raynetgmbh.zendesk.com.
Please keep in mind that our support team cannot assist on the elimination of issues caused by
external plug-in logic that you implemented on your own. If there are further requirements for Raynet
specialist back up regarding external plug-ins, there are additional trainings or consultant services
Raynet is always pleased to offer.

Multiple plug-in execution

Whenever a checklist evaluation has been started by giving element results and / or running
plug-ins, RayQC stores the current item availability and result state within the session memory.
Due to conditiona l statements, changing a single item result may significantly change the
availability of checklist items and groups. Combining the idea of plug-in execution results which
may be injected as results into element results, and conditions that depend on element results,
it becomes clear that rerunning a plug-in may lead to differing results (especially during the
checklist preparation phase when the configuration settings or system preconditions usually
change between the plug-in executions).

In order to make sure that users are aware of rerunning a plug-in, RayQC displays an info
dialog, asking for a confirmation of the follow-up triggering. Please make sure that
overwriting existing data is really the intended action. To be absolutely sure about the
correct checklist flow results, it is recommended not to rerun a single plug-in, but to

reset the whole checklist and start again from the beginning. Especially results generated from
highly complex conditional statements may turn out to be confusing when only parts of a
checklist are rerun, or retriggered in case of plug-ins.

Internal Plug-Ins
When RayQC is installed on a system, a number of built-in (internal) plug-ins become available.
Their functionality is static, and can therefore not be cha nged, but only ca lled by elements.

The following sections describe the purpose and public interface of the internal plug-ins. In order to get details

https://raynetgmbh.zendesk.com

196User Guide RayQC 6.2

Plug-Ins

on how to integrate them into checklists, or on how to handle plug-in execution during checklist evaluation,
please refer to the specific sections within this document.

Read on for technical information regarding

Command plug-in
File plug-in
Folder plug-in
Ini File plug-in
Local System plug-in
Logic plug-in
MSI plug-in
RayFlow plug-in
Registry plug-in

Advanced plug-in

Be aware:
If not explicitly described differently, the following general rules apply to plug-in handling:

All input parameters for internal plug-ins are mandatory.
Whenever a plug-in execution fails due to missing or invalid parameter definitions, the value of the
plug-ins parent element is set to an informative error message.
The same error message communication is applied whenever a timeout exceeds or another issue
prevented the plug-in from standard termination.
The maximum number of characters for a string is 1,073,741,823.
The range for an integer value is from –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
All string comparisons are case sensitive. Some functions may alter this by using an additional
boolean parameter.

Note:
Further information regarding external (custom) plug-ins will be given in the External Plug-Ins section
of this document.

Command Plug-In
The Command plug-in offers simple access to the Windows command prompt, allowing users to
either start a process or run a VB script.

Function summary

RunVBS
StartProcess

197User Guide RayQC 6.2

Plug-Ins

Function details

RunVBS

Launches a visual basic script and returns the last line of
output.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

Script formatted string The name and path of the VB Script that has to be
run.

Example:
C:\Program Files (x86)\RayPack

\RayPackHelper.vbs

Arguments string
optional
default value: none

The optional set of arguments used to transfer
additional parameter information for the script
execution itself.

Example:
"MSI C:\RayPack\Projects\FileZilla_3_1_1_2

_MSI\FileZilla.msi"

Timeout integer
optional
default value: -1

Time in milliseconds the script is allowed to run.

Options:
-1 indicates infinite timeout.
0 leads to immediate timeout at script
execution. (This setting may be used for test
purposes)
All other positive integer values are evaluated
as allowed script run time in milliseconds.

ResultSource formatted string The definition of the scripts communication pipe
that has to be used as source for the return value.

Options:
"Standard output"

"Standard error"

"Exit Code"

198User Guide RayQC 6.2

Plug-Ins

StartProcess

Starts a process.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

Command formatted string The name and path of the command that has to be
executed. In case the file is located in a folder that
is part of the environment variable PATH, the path
of the file can be omitted.

Example:
ipconfig

Arguments string
optional
default value: none

The optional set of arguments used to specify
details of the command parameter.

Example:
/all

Timeout (ms) integer
optional
default value: -1

Time in milliseconds the script is allowed to run.

Options:
-1 indicates infinite timeout.
0 leads to immediate timeout at script
execution. (This setting may be used for test
purposes)
All other positive integer values are evaluated
as allowed script run time in milliseconds.

ResultSource formatted string The definition of the scripts communication pipe
that has to be used as source for the return value.

Options:
"Standard output"

"Standard error"

"Exit Code"

File Plug-In
The File plug-in deals with functionality required to retrieve information about and to
manipulate files.

199User Guide RayQC 6.2

Plug-Ins

Function Summary

CompareFiles
CopyFile
DeleteFile
FileExists
FileOpenDialog
GetACL
GetCertificateData
GetHash
GetProperty
GetTextFileContent
Unzip
VerifyZip

200User Guide RayQC 6.2

Plug-Ins

Function Details

CompareFiles

Binary content comparison of files.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

FileA formatted string The name and path of the first file for the
comparison.

Example:
C:\Temp\Sample.vbs

FileB formatted string The name and path of the second file for the
comparison.

Example:
C:\Temp\Sample2.vbs

CopyFile

Copies a file. If the file targeted by source is not found, the
returned result is No, otherwise Yes.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

Source formatted string The name and path of the source file.

Example:
C:\Temp\Sample.vbs

Target formatted string The target destination (full path with file name).

Example:
C:\Windows\Sample2.vbs

201User Guide RayQC 6.2

Plug-Ins

DeleteFile
Deletes a file of the given name.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

Filename formatted string The name and path to the file that is to be deleted.

Example:
C:\Windows\SampleFile.msi

Delete after
reboot

boolean string
optional
default value: false

If set, the file will be deleted after reboot.
false: The file will be deleted directly.
true: The file will be deleted after a reboot.

Be aware:
The Delete after Reboot option will only be working if RayQC has been started using
administrative rights!

FileExists

Checks if a file exists. If the file is not found, the returned result
is No, otherwise Yes.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

File formatted string The name and path of the file whose existence has
to be verified.

Example:
C:\Temp\Sample.vbs

FileOpenDialog

Displays a new instance of an open file system dialog.
Usable in combination with elements of type Data Field.

Input parameters

202User Guide RayQC 6.2

Plug-Ins

Name Type Description & Examples

FileType formatted string 1..n filter definitions, separated by a pipe (|)
Each filter definition consists of "description|
pattern"

Example:
To filter for text files:
Text files (*.txt)|*.txt|All files (*.*)|*.*

To deactivate the filter:
All files (*.*)|*.*

FullFilename boolean string
optional
default value: true

Options:
true: Result contains full file path
false: Result contains file name (without path)

GetACL

Get a file's access control list.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

File formatted string The name and path to the file whose ACL info has
to be retrieved.

Example:
C:\Windows\SampleFile.ini

GetCertificateData

Reads the subject string from the certificate of a file.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

File formatted string The name and path of the file whose certificate
info has to be retrieved.

Example:

203User Guide RayQC 6.2

Plug-Ins

C:\Windows\SampleFile.ini

GetHash

Returns the hash value for a file.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

File formatted string The name and path of the file whose hash value
has to be calculated.

Example:
C:\Windows\SampleFile.ini

Algorithm formatted string
optional
default value: SHA-
1

List of available calculation algorithms to select
from.

Options:
MD5

SHA-1

SHA256

SHA384

SHA512

RIPEMD160

204User Guide RayQC 6.2

Plug-Ins

GetProperty

Get the value for the chosen file property.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

File formatted string The name and path of the file whose property
value has to be retrieved.

Example:
C:\Windows\SampleFile.ini

Property formatted string List of available properties to select from.

Options:
Version: the file version
Size: the file size in bytes

GetTextFileContent

Gets the content of a text file including white characters.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

Text file path string The name and path of the file whose property
value has to be retrieved.

Example:
C:\Windows\example.txt

Unzip

Extracts files from a ZIP archive.
Usable in combination with elements of type Data Field.

Input parameters

205User Guide RayQC 6.2

Plug-Ins

Name Type Description & Examples

File formatted string The name and path of the .zip file.

Example:
C:\Windows\SampleContainer.zip

Cleanup boolean string
optional
default value: true

The path to the folder that contains the unzipped
files is determined by the SHA-1 hash value of the
.zip container.

Options:
enabled: If the calculated unzip target folder
already exists, it will be reused.
disabled: The calculated unzip target folder will
be cleared if it already exists, and populated
with the current .zip content.

VerifyZip

Validates the integrity of a ZIP file. If needed, this function
processes a full archive extraction for checking.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

File formatted string The name and path of the .zip file.

Example:
C:\Windows\SampleContainer.zip

Extract Check boolean string
optional
default value: false

Determines whether or not RayQC extracts the
files if the requested .zip.

Options:
enabled: Files are extracted to check the
archive structure.
disabled: Files are not extracted.

Folder Plug-In
The Folder plug-in deals with functionality required to retrieve information about folders and to
manipulate them.

206User Guide RayQC 6.2

Plug-Ins

Function Summary

CompareFolders
CompareFolderWithHash
CopyFolder
CreateFolder
FolderExists
FolderOpenDialog
GetACL

207User Guide RayQC 6.2

Plug-Ins

Function Details

CompareFolders

Binary content comparison of files within 2 folders.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

FolderA formatted string The path to the first folder for the comparison.

Example:
C:\Temp\Sample\

FolderB formatted string The path to the second folder for the comparison.

Example:
C:\Temp\Sample2\

Include
Subdirectories

boolean string
optional
default value: true

Options:
enabled: Recursive comparison of sub-
directories is applied
disabled: Comparison is not executed on files
within sub-directories

CompareFolderWithHash

Compares the hash values of the files stored within a folder
with a given table of hash | path values.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

Folder formatted string The path to the folder for the comparison of file
hashes.

Example:
C:\Temp\Sample\

208User Guide RayQC 6.2

Plug-Ins

HashFile formatted string The path to the file that contains the hash values
for comparison.

Example:
C:\Temp\SampleHashValues.txt

Hash Algorithm formatted string
optional
default value: SHA-
1

List of available calculation algorithms to select
from.

Options:
MD5

SHA-1

SHA256

SHA384

SHA512

RIPEMD160

Include
Subdirectories

boolean string
optional
default value: true

Options:
enabled: Recursive comparison of sub-
directories is applied
disabled: Comparison is not executed on files
within sub-directories

CopyFolder

Copies a folder. Returns Yes if copying was successful.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

Source formatted string The path to the source folder.

Example:
C:\Temp\Sample\

Target formatted string The target destination.

Example:
C:\Windows\Sample2\

Include
Subdirectories

boolean string
optional
default value: true

Options:
enabled: Recursive copy of sub-directories is
executed
disabled: Copy is not executed sub-directories
and files within sub-directories

209User Guide RayQC 6.2

Plug-Ins

CreateFolder

Creates a folder. Returns Yes if the creation was successful.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

Folder Name formatted string The path of the folder that has to be created.

Example:
C:\Temp\Sample\NewFolder\

FolderExists

Checks if a folder exists. If the directory is not found, the
returned result is No, otherwise Yes.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

Folder formatted string The path of the folder whose existence has to be
verified.

Example:
C:\Temp\Sample\ExistingFolder\

FolderOpenDialog

Shows an open folder system dialog.
Usable in combination with elements of type Data Field.

This function does not accept parameters.

GetACL

Get a folder's access control list.
Usable in combination with elements of type Data Field.

210User Guide RayQC 6.2

Plug-Ins

Input parameters

Name Type Description & Examples

Folder formatted string The path of the folder whose ACL info has to be
retrieved.

Example:
C:\Temp\Sample\Folder\

IniFile Plug-In
The IniFile plug-in deals with functionality required to read or write INI file contents.

Function Summary

GetSectionKeys
GetSections
KeyExists
Read
SectionExists
Write

Function Details

GetSectionKeys

Returns a pipe-separated section names list.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

File Name formatted string The path to the INI file.

Example:
C:\Temp\Sample.ini

Section string Name of the section which has to be searched for
the key.

211User Guide RayQC 6.2

Plug-Ins

Example:
[URL]

CaseSensitive boolean
optional
default value: true

Specify if the input parameter is case sensitive or
not

Example:
enabled: input parameter is case sensitive
disabled: input parameter is not case sensitive

GetSections
Returns the pipe-separated key names list of a specified
section.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

File Name formatted string The path to the INI file.

Example:
C:\Temp\Sample.ini

CaseSensitive boolean
optional
default value: true

Specify if the input parameter is case sensitive or
not

Example:
enabled: input parameter is case sensitive
disabled: input parameter is not case sensitive

KeyExists

Checks whether or not a specific INI file key exists.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

File Name formatted string The path to the INI file.

Example:
C:\Temp\Sample.ini

Section string Name of the section which has to be searched for

212User Guide RayQC 6.2

Plug-Ins

the key.

Example:
[URL]

Key string Name of the key that has to be looked for.

Example:
Protocol

CaseSensitive boolean
optional
default value: true

Specify if the input parameter is case sensitive or
not

Example:
enabled: input parameter is case sensitive
disabled: input parameter is not case sensitive

Read

Reads an INI file value.
Usable in combination with elements of types Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

File formatted string The path to the INI file.

Example:
C:\Temp\Sample.ini

Section string Name of the section which has to be searched for
the key.

Example:
[URL]

Key string Name of the key that has to be read.

Example:
Protocol

CaseSensitive boolean
optional
default value: true

Specify if the input parameter is case sensitive or
not

Example:
enabled: input parameter is case sensitive

213User Guide RayQC 6.2

Plug-Ins

disabled: input parameter is not case sensitive

SectionExists

Checks for an existing INI
file section.
Usable in combination with elements of types Data Field and Checkpoint.

Input parameters

Name Type Description & Examples

File Name formatted string The path to the INI file.

Example:
C:\Temp\Sample.ini

Section string Name of the section which has to be searched for
the key.

Example:
[URL]

CaseSensitive boolean
optional
default value: true

Specify if the input parameter is case sensitive or
not

Example:
enabled: input parameter is case sensitive
disabled: input parameter is not case sensitive

Write

Writes an INI file value and returns Yes on success.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

File formatted string The path to the INI file.

Example:
C:\Temp\Sample.ini

Section string Name of the section that contains the key. If the

214User Guide RayQC 6.2

Plug-Ins

section is not present in the INI file, it will be
added.

Example:
[URL]

Key string Name of the key whose value is about to be set. If
it is not present in the target section, it will be
added.

Example:
Protocol

V alue string Value that has to be set for the specified key. The
value must not be empty, and is not checked for
suitable handling of special characters. If the key
already exists within the target INI file section, the
existing content will be overwritten.

Example:
HTTPS

CaseSensitive boolean
optional
default value: true

Specify if the input parameter is case sensitive or
not

Example:
enabled: input parameter is case sensitive
disabled: input parameter is not case sensitive

Local System Plug-In
The Local System plug-in deals with functionality required to read gather information about the Local System.

Function Summary

GetEnvVariable
GetMachineName
GetOsName
GetProcessorCount
GetResources
GetServiceStatus
GetUserDomainName
GetUserName
Is64Bit

215User Guide RayQC 6.2

Plug-Ins

Function Details

GetEnvVariable

Returns the current value of the referenced environment
variable.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

V ariable string Name of the environment variable whose value
has to be retrieved.

Example:
TMP

GetMachineName

Returns the name of the
machine RayQC is running
on.
Usable in combination with elements of types Data Field and Multi-Option.

This function does not accept parameters.

GetOsName

Returns the name of the
operating system.
Usable in combination with elements of types Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

Translate boolean
optional
default value: true

Switch for return value type definition.

Example:
enabled: the translated OS name is returned

216User Guide RayQC 6.2

Plug-Ins

disabled: the raw OS version string is returned

GetProcessorCount

Return the processor count
for the current machine.
Usable in combination with elements of types Data Field and Multi-Option.

This function does not accept parameters.

GetResources

Returns a path to the current working directory where
supporting files [Resources] can be found.
Usable in combination with elements of types Data Field.

Input parameters

Name Type Description & Examples

File formatted string
optional
default value: none

If a file name is given, RayQC will extend the
return value with this file name to provide the full
path to the resource file including the actual file
name for direct file access.

Example:
Using
Sample.txt as value for the File parameter
C:\Users\Admin\AppData\Local\Temp\RayQC

\working\2040_0\Resources\ as path retrieved by
the function
leads to

C:\Users\Admin\AppData\Local\Temp\RayQC

\working\2040_0\Resources\Sample.txt as total
return value of the plug-in function execution

GetServiceStatus

Returns the status of the given service.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

217User Guide RayQC 6.2

Plug-Ins

Name Type Description & Examples

ServiceName string Name of the service whose status has to be
retrieved.

Example:
Remote Registry

GetUserDomainName

Returns the user domain
name for the user running
RayQC.
Usable in combination with elements of types Data Field and Multi-Option.

This function does not accept parameters.

GetUserName

Returns the user name for
the user running RayQC.
Usable in combination with elements of types Data Field and Multi-Option.

This function does not accept parameters.

Is64Bit

Returns Yes if the current operating system is a 64bit system.
Usable in combination with elements of type Data Field.

This function does not accept parameters.

Logic Plug-In
The Logic plug-in deals with functionality required to convert, compare and analyze values.

Function Summary

BooleanToString
CompareValue
ContainsString
FormatString
GetRegexGroup

GetTrimmedString
GetTrimmedStringStatic
InvertBoolean
MatchRegex
NumberInRange

218User Guide RayQC 6.2

Plug-Ins

GetStringLength
GetSubString

StringToString
TrimWhitespace

Function Details

BooleanToString

Converts a boolean value or
checkpoint result to a
defined string. This function can for example be used to map a checkpoint state to a multi-
option item.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

V alue boolean
default: true

Boolean value, which is in most cases defined as
reference to a checkpoint result.

Options:
enabled: the text entered into the True Text
parameter is returned.
disabled: the text entered into the False Text
parameter is returned.

TrueText string The text that is returned if value is true.

Example:
64bit Architecture

FalseText string The text that is returned if value is false.

Example:
32bit Architecture

219User Guide RayQC 6.2

Plug-Ins

CompareValue

Compares two values, which may be required to compare the
result of two checklist elements, or a static string with an
element result.
Usable in combination with elements of type Checkpoint.

Input parameters

Na
me

Typ
e

Description & Examples

Act
ual

strin
g

The first string for the comparison.

Example:
Raynet GmbH

Exp
ecte
d

strin
g

The second string for the comparison.

Example:
raynet gmbh

Cas
e
sen
sitiv
e

bool
ean
opti
onal
defa
ult:
true

Defines if the comparison has to be executed case sensitive or not.

Example:
enabled = The 2 strings used as examples above will be regarded to be different.
disabled = The 2 strings used as examples above will be regarded to match.

Cus
tom
Fail
ure
Co
mm
ent

strin
g
opti
onal

The default failure comment of the Checkpoint element can be exchanged by
this string if required.

Example:
This environment requires the manufacturer property and the author attribute of
the summary information stream to match case sensitive.

ContainsString

Searches for a specific string in another string.
Usable in combination with elements of type Checkpoint.

Input parameters

Na Ty Description & Examples

220User Guide RayQC 6.2

Plug-Ins

m
e

pe

Te
xt

str
in
g

The haystack to search within.

Example:
RayQC is a rule-based tool used to create and execute test criteria in one or more
checklists.

Se
ar
ch

str
in
g

The needle to search for.

Example:
Checklist

Ca
se
Se
ns
iti
ve

bo
ol
ea
n
op
tio
na
l
de
fa
ult
:
tr

ue

Defines if the needle has to be found exactly in the case usage as defined within the
parameter search.

Example:
enabled = The needle defined above will not be found within the example haystack.
disabled = The needle defined above will be found within the example haystack..

Cu
st
o
m
Fa
ilu
re
Co
m
m
en
t

str
in
g
op
tio
na
l

The default failure comment of the Checkpoint element can be exchanged by this
string if required.

Example:
Case sensitive substring search did not lead to a match.

FormatString

Formats a string by
replacing up to five defined
placeholders with arguments. A placeholder has the format '#x#' with 'x' as number of the
argument.
Usable in combination with elements of type Data Field and Multi-Option.

221User Guide RayQC 6.2

Plug-Ins

Input parameters

Name Type Description & Examples

Text string The string that contains the placeholders that
have to be replaced.

Example:
The value of the #1# property is defined as #2#.

Replacement
#<number>#

string The value of the #1# property is defined as #2#
The value inserted into the original text at the
position of the placeholder #number#.

Example:
manufacturer

GetRegexGroup

Checks whether a text
matches the pattern
defined by a singular regular expression group.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

Text string The string that is scanned for regular expression matching.

Example:
uninst_myApp.lnk

Regular
Expressio
n

string The regular expression pattern the string is evaluated by. The
sample pattern given below matches the sample text above.

Example:
First test value is "AAA" and the second test value is "111".

"(.*?)"

Gets the string between first quote.

Tip:
Please take a look at the Regular Expressions section for further information and
assistance regarding regex usage.

222User Guide RayQC 6.2

Plug-Ins

GetStringLength

Returns the length of a
string. If no string is given, 0
is returned
Usable in combination with elements of types Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

Text string
optional
default: none

String of which the characters are counted.

Example:
The following sentence has a string length of 161:
RayQC increases the quality of your software
deployments through multi-level and
standardized test plans by relieving the manual
testing tasks of your workforce.

GetSubString

Returns a substring from a
given text.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

Text string The string that is used to extract the substring
from. The samples used here lead to the
extraction of the substring experience.

Example:
Improve end-user experience and productivity!

First integer
minimum value: 1

The first letter, number or special character that is
returned as part of the substring. The counted
value starts at 1 for the first character of the Text
parameter. Using negative numbers will count
from the end (true for both numbers)

Example:
17

Last integer The last letter, number or special character that is

223User Guide RayQC 6.2

Plug-Ins

 returned as part of the sub-
string. The counted value starts at 1 for the first
sign of the Text parameter.

Be aware:
The value given for this parameter may not be
lower than the value entered for the parameter
First.

Example:
26

GetTrimmedString

Returns a sub-string as
result of trimming a given
string.
Usable in combination with elements of types Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

Text string The string that is trimmed. The sample used here
lead to the extraction of the trimmed sub-string
00FF00.

Example:
<#!"§00FF00+#>

TrimStart string
optional
default: none

The set of characters that is trimmed from the
start of the original string. The order of the
characters is not important.

Example:
<§"!#

TrimEnd string
optional
default: none

The combination of signs that is trimmed from the
end of the original string. The order of the
characters is not important.

Example:
#+>

224User Guide RayQC 6.2

Plug-Ins

GetTrimmedStringStatic

Returns a sub-string as
result of trimming a given
string.
Usable in combination with elements of types Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

Text string The string that is trimmed. The sample used here
lead to the extraction of the trimmed substring
00FF00+#.

Example:
<#!"§00FF00>

TrimStart string
optional
default: none

The set of characters that is trimmed from the
start of the original string.

Be aware:
The order of characters is important. The given
string must exactly match the start of the Text
parameter, otherwise the trimming will not be
executed.

Example:
<#!"§

TrimEnd string
optional
default: none

The combination of signs that is trimmed from the
end of the original string.

Be aware:
The order of characters is important. The given
string must exactly match the end of the Text
parameter, otherwise the trimming will not be
executed.

Example:
#+>

InvertBoolean

Inverts a boolean (Yes / No) value.
Usable in combination with elements of type Checkpoint.

225User Guide RayQC 6.2

Plug-Ins

Input parameters

Name Type Description & Examples

V alue boolean The original boolean value that has to be inverted.

Be aware:
Inverting a boolean value does not invert the
value expectation of the element itself! If Yes is
the expected result of the Checkpoint element
that has been extended by this plug-in function,
and the Value parameter is set to No, the element
will evaluate to false / No. Please make sure to
double-check expected element evaluation
results whenever expected va lue and / or invert
boolean are applied to any Checkpoint element!

Options:
enabled: is inverted to No
disabled: is inverted to Yes

MatchRegex

Checks if the text contains a string that matches a specific
regular expression. If FailureComment is not set, it is
autmatically generated by the plug-in.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

Text string
optional

The string that is scanned for regular expression matching.

Example:
uninst_myApp.lnk

Regular
Expression

string The regular expression pattern the string is evaluated by.
The sample pattern given below matches the sample text
above.

Example:
^unins(|t|tall)\d*\.(cif|cfg|dat|dll|ini|exe|xml|lnk)$

FailureComm
ent

string
optional
default:
generated by

The failure comment that is presented if the regular
expression does not match the Text parameter.

226User Guide RayQC 6.2

Plug-Ins

RayQC

Tip:
Please take a look at the Regula r Expressions section for further information and
assistance regarding regex usage.

NumberInRange

Checks the input parameter for being an integer in the given
range.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

Text string The numeric string that is evaluated regarding its integer value.

Example:
15

F

HexV alue boolean
optional
default:
false

If a hexadecimal number is given as input parameter value, this
option has to be set to true in order to achieve a valid check result.

Options:
enabled = checkbox is activated: input is evaluated as hexadecimal value.
disabled = checkbox is not activated: input is evaluated as integer value.

Minimum integer
optional
default:
none

The minimum value of the checked range (inclusive).

Example:
14 leads to evaluation to true for the sample Text parameter defined
above.
15 leads to evaluation to true for the sample Text parameter defined
above.
16 leads to evaluation to false for the sample Text parameter defined
above.

Maximum integer
optional
default:
none

The maximum value of the checked range (inclusive).

Example:
14 leads to evaluation to false for the sample Text parameter defined
above.
15 leads to evaluation to true for the sample Text parameter defined
above.
16 leads to evaluation to true for the sample Text parameter defined

227User Guide RayQC 6.2

Plug-Ins

above.

StringToString

Converts string to string
based on two synchronized
lists. Lists are regarded to be synchronized if they have the same number of elements. This
function can for example be used to map plug-in function output to multi-option values.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

V alue to convert formatted string The string that will be converted

Example:
There is a bird in the tree.

Following the example lists below, this string will
be converted to “There is a cat in the house.”

From formatted string The list of strings that is being searched for. List items have
to be separated by the pipe sign (|).

Example:
Bird|Mouse|Dog|Tree

To string The list of strings that will replace the strings defined in
parameter From.

Example:
Cat|Home|Fish|House

228User Guide RayQC 6.2

Plug-Ins

TrimWhitespace

Returns the given text with
trimmed whitespaces.
Usable in combination with elements of types Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

Text string The string that has to be trimmed. The sample
string has both: 1 leading and 1 trailing
whitespace.

Example:
" This is a sample text! "

TrimStart boolean
optional
default: false

Decides whether or not leading whitespaces have
to be trimmed.

Options:
enabled = checkbox is active: leading
whitespaces are trimmed.
disabled = checkbox is not active: leading
whitespaces are not trimmed.

TrimEnd boolean
optional
default: false

Decides whether or not trailing whitespaces have
to be trimmed.

Options:
enabled = checkbox is active: trailing
whitespaces are trimmed.
disabled = checkbox is not active: trailing
whitespaces are not trimmed.

Regular Expressions
Regular expressions (abbreviated to RexEx or RegExp) are sequences of characters forming a
search pattern that can be used to identify a textual material of a given pattern. The syntax of
regular expression is standardized and used along many different products and operating
systems, particularly for find and replace functionalities.

RayQC uses regular expressions to provide a flexible way of defining compact text matching
conditions, which can used to determine whether or not a specific test result is tolerable.

The following cheat sheet presents some commonly used regular expression patterns and

229User Guide RayQC 6.2

Plug-Ins

example patterns with explanation.

230User Guide RayQC 6.2

Plug-Ins

Phrase Description Examples

Letters or
digits

Literal meaning, case
sensitive

Abc matching Abc but not abc

Pipe (|) Alternative A|b matching A, b, Ab but not BC

Asterisk (*) Zero or more instances
of the previous set

A*b matching Aaaaab, Ab, bcd but not Ac
A|b* matching a, b, bb, bbb but not CDE

Plus (+) One or more instances
of the previous set

A+b matching Ab, AAAb but not b
(a|b)+cd matching acd, bcd, aaacd, abcd, bacd but not
cd

Folder[0-9]+ matching Folder1, Folder2, Folder21
but not Folder or FolderA

Question
mark (?)

Zero or one instance of
the previous set

Ab?(c|d) matching Ac, Ade, Abcd but not Abb

Round
brackets
(and)

Grouping of sets (abc|def)ghi matching abcghi, defghi, abcdefghi but
not abcdef
(a|b|c)?def matching adef, cdefghi, def but not abc

Caret (^) On the beginning of the
string marks that no
characters are allowed
before

^abc matching abc, abcdef but not defabc
^(folder1|folder2|folder3)\\test matching
folder1\test, folder2\test\test2 but not C:\folder1
\test

Dollar ($) At the end of the string
marks that no
characters are allowed
after

:\\test\\folder$ matching C:\test\folder, D:\test
\folder but not C:\test\folder1

Square
brackets
[and]

Allowed set of
characters

[a-z] matching abc, def but not 123
^[A-D]:\\Test\\ matching C:\Test\ and D:\Test\ but
not E:\Test\
folder[a-zA-Z0-9] matching folderA, folder1 but
not folder\test

Caret in
square
brackets [^]

In square brackets –
negation of character
set

C:\\folder[^\\]*\\test will match C:\folder\test
but not C:\folder\subfolder\test

Dot (.) Any character Folder.\\test will match FolderA\, Folder4\,
Folder$\ but not Folder\

Backslash (\) Escape character C:\\test\\test2 matches C:\test\test2 but not C:\
\test\\test2

Test* matches Test*
Test\(a\) matches Test(a) but not Testa

(?i) Used at the beginning
on the expression – do
not match case

(?i)abc will match abc, Abc, ABC123 but not 123

231User Guide RayQC 6.2

Plug-Ins

Examples

^(?i)(%windir%)\\Installer$

Matches Does not match

%windir%\Installer

%windir%\INSTALLER

%windir%\Installer\123-123.msi

^(?i)%ProgramFiles\(x86\)%\\Common Files\\(InstallShield|Wise Installation)$

Matches Does not match

%ProgramFiles(x86)%\Common Files

\InstallShield

%ProgramFiles(x86)%\COMMON FILES

\Wise Installation

%ProgramFiles(x86)%\Common Files\Microsoft

%ProgramFiles%\Common Files\InstallShield

%ProgramFiles(x86)%\Common Files\

%ProgramFiles(x86)%\Common Files\

Wise Installation\Subfolder

^unins(|t|tall).*\.(cif|cfg|dat|dll|ini|exe|xml|lnk)$

Matches Does not match

uninst.exe

uninst_myApp.lnk

uninstallapp.cfg

uninst.ini

MyProgram_uninstall.cfg

uninstall.txt

unins.txt

^_isreg32\.dll$

Matches Does not match

_isreg32.dll _ISREG32.dll

isreg32.dll

_isreg.dll

_isreg32.dll.backup

^(?i)(HKEY_LOCAL_MACHINE|HKEY_CURRENT_USER)\\(Software\\Wow6432Node|Software)

\\InstallShield

Matches Does not match

HKEY_LOCAL_MACHINE\Software\InstallShield

HKEY_LOCAL_MACHINE\Software\Wow6432Node

\InstallShield

HKEY_CURRENT_USER\SOFTWARE\Wow6432Node

\InstallShield

HKEY_CURRENT_USER\Software\INSTALLSHIELD

HKEY_CLASSES_ROOT\Software\InstallShield

HKEY_CURRENT_USER\Software

\Progrems\InstallShield

232User Guide RayQC 6.2

Plug-Ins

^%USERPROFILE%\\(.+\\)?Temp$

Matches Does not match

%USERPROFILE%\Temp

%USERPROFILE%\test\Temp

%USERPROFILE%\test\test2\Temp

%USERPROFILE%\Temp2

“%USERPROFILE%\Temp”

%userprofile%\Temp

MSI Plug-In
The MSI plug-in deals with functionality required to read information from MSI packages, allows
validating MSI packages against ICE rule sets, and is able to extract the files contained within MSI
packages.

Function Summary

ExtractFiles
GetProperty
GetSummaryInfo
IceValidation
Query

Function Details

ExtractFiles

Extracts the file resources from an MSI to a temporary folder
and returns the folder name.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

MSIFile formatted string The name and path of the MSI file.

Example:
C:\Temp\Sample.msi

ReUse Data boolean string
optional
default value: true

The path to the folder that contains the extracted
files is determined by the SHA-1 hash value of the
MSI file.

233User Guide RayQC 6.2

Plug-Ins

Options:
enabled: If the temporary extraction folder
already exists, it will be reused.
disabled: The temporary extraction folder will
be cleared if it already exists, and populated
with the current set of extracted files.

MST File formatted string
optional
default value: none

The name and path of an optional MST file that
may extend the MSI package.
Multiple transform files can be applied using a
comma separator.

Example:
C:\Temp\German.mst

GetProperty

Looks for the value of a
property in an MSI package.
This means that according to the given property name, the content of the value column is
queried from the Property table of the installer database.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

MSIFile formatted string The name and path of the MSI file.

Example:
C:\Temp\RayEval.msi

MSTFile formatted string
optional
default value: none

The name and path of an optional MST file that
may extend the MSI package.
Multiple transform files can be applied using a
comma separator.

Example:
C:\Temp\German.mst

Property string Name of the property whose value has to be
retrieved.

Example:
Manufacturer

234User Guide RayQC 6.2

Plug-Ins

GetSummaryInfo

Requests an attribute from
the summary information
stream of an MSI package.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

MSIFile formatted string The name and path of the MSI file.

Example:
C:\Temp\RayEval.msi

MSTFile formatted string
optional
default value: none

The name and path of an optional MST file that
may extend the MSI package.
Multiple transform files can be applied using a
comma separator.

Example:
C:\Temp\German.mst

Attribute string Name of the attribute whose value has to be
retrieved. This parameter has to be selected from
the default pool of attributes:

Options:
Author

Comments

CreatingApp

Keywords

LastSavedBy

RevisionNumber

Subject

Template

Title

CharacterCount

CodePage

CreateTime

LastPrintTime

LastSaveTime

PageCount

Security

WordCount

Date/Time Format formatted string
optional
default value:

If the requested attribute is a date or date-time
combination, the selected format schema will be
applied.

235User Guide RayQC 6.2

Plug-Ins

dd.MM.yyyy
HH:mm:ss Options:

d.MM.yyyy HH:mm:ss

dd.MM.yyyy

MM/dd/yyyy HH:mm:ss

MM/dd/yyyy

IceValidation

Validates an MSI package by applying checks as defined by
the rules of the parametrized CUB file.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

MSI File formatted string The name and path of the MSI file.

Example:
C:\Temp\RayEval.msi

MST File formatted string
optional
default value: none

The name and path to an optional MST file that
may extend the MSI package.
Multiple transform files can be applied using a
comma separator.

Example:
C:\Temp\German.mst

Cub Filename formatted string The name and path of the CUB file that contains
the rules to validate the MSI against.

Example:
C:\Temp\Darice.cub

Suppressed
Checks

formatted string
optional
default value: none

Comma separated list of ICE rule names, which
are present in the CUB file, but should not be
applied during validation.

Example:
ICE01,ICE33,ICE64

MaxWarnings integer
optional
default value: -1

Maximum number of warnings that may occur
during the ICE validation without causing the
plug-in result to turn false.

Options:
-1: The number of warnings that arise during the

236User Guide RayQC 6.2

Plug-Ins

ICE validation does not have any effect on the
checkpoint result.
0: Any CUB rule evaluation that reveals a
warning causes the plug-in result to turn false.
Any other integer > 0: As long as the number
of warnings that arise during ICE validation is
below the entered value, the checkpoint result
evaluates to true.

MaxErrors integer
optional
default value: 0

Maximum number of errors that may occur during
the ICE validation without causing the plug-in
result to turn false.

Options:
-1: The number of errors that arise during the
ICE validation does not have any effect on the
checkpoint result.
0: Any CUB rule evaluation that reveals an error
causes the plug-in result to turn false.
Any other integer > 0: As long as the number
of errors that arise during ICE validation is below
the entered value, the checkpoint result
evaluates to true.

Query

Executes a reading query on
the installer database. The
default query schema is defined as:
SELECT item FROM table WHERE key = value

Please note that the supported set of SQL operators and language constructs is limited for
installer database queries, which is why the query function is limited to a straight forward select
statement.
The result set of the query execution may contain 0,1, or several data objects.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

MSIFile formatted string The name and path of the MSI file.

Example:
C:\Temp\RayEval.msi

MSTFile formatted string
optional
default value: none

The name and path of an optional MST file that
may extend the MSI package.
Multiple transform files can be applied using a

237User Guide RayQC 6.2

Plug-Ins

comma separator.

Example:
C:\Temp\German.mst

Select string SQL expression that determines the data column
that has to be retrieved from the installer
database.

Example:
Action

From string SQL expression determining the table that
contains the information that has to be read.

Example:
CustomAction

Where string
optional
default value: none

SQL expression that determines a data column
that is used as base for the equative result set
filtering.
If the Equals parameter is not empty, Where must
be provided as well.

Example:
Type

Equals string
optional
default value: none

Value used to filter the query result set. It has to
be present within the column specified by the
Where parameter.
If the Where parameter is not empty, Equals must
be provided as well.

Example:
19

RayFlow Plug-In
The RayFlow plug-in deals with functionality required to establish communication between the
RaySuite components RayQC and RayFlow.

Function Summary

AddComment
GetComments
GetConnectionInfo

238User Guide RayQC 6.2

Plug-Ins

GetField
GetFile
GetPackage
SetField
UploadFile

Function Details

AddComment

Adds a comment to a RayFlow package (task). Returns Yes if
the comment has been added successfully.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

RayFlow Package
ID

string The ID of a RayFlow package (task).

Example:
123e4567-e89b-12d3-a456-426655440000

Comment string A text that will be written as a comment.

Example:
This is a comment from RayQC.

GetComments

Gets comments from a RayFlow package (task).
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

RayFlow Package
ID

string The ID of a RayFlow package (task).

Example:
123e4567-e89b-12d3-a456-426655440000

239User Guide RayQC 6.2

Plug-Ins

GetConnectionInfo

Requests one of the parameter values from the current
RayFlow connection settings.
Usable in combination with elements of type Data Field.

Input parameters

Name Type Description & Examples

Connection
Information

formatted string The specific property of the connection
credentials that has to be retrieved.

Options:
User

URL

Package ID

Project ID

GetField

Request a value from the
RayFlow data object
referenced by the current connection and therefore requires an active connection to the
RayFlow database server.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

RayFlowField string The name of the RayFlow data field that has to be
retrieved.

Example:
Manufacturer

RayFlowPackageI
D

string The ID of the RayFlow package, usually delivered
with the GetPackage plug-in.

Example:
c32715f5-186d-49c7-b998-30f5d50v95fb

GetFile

Downloads the specified file from RayFlow server. Returns the
full path to the downloaded file.
Usable in combination with elements of type Data Field.

240User Guide RayQC 6.2

Plug-Ins

Input parameters

Name Type Description & Examples

RayFlow Package
ID

string The name of the RayFlow data field that has to be
retrieved.

Example:
Manufacturer

Download file boolean
default: true

Indicates whether a file should be downloaded or
only the existence of this file should be verified.

Enabled = the file will be downloaded.
Disabled = the file will verified on RayFlow
server. If the file will be found the file name is
returned, otherwise false is displayed.

Output directory string
optional

The full path to the output directory, where file
will be downloaded. If the path is not set, the file
will be saved in the %TEMP% folder.

Example:
C:\Downloads

File name string The exact name of the file OR the regular
expression that should be used to find requested
file.

Example:
FileZilla_1.0.0.mst

Match name as
regular
expression

boolean
default: false

Indicates whether the File name parameter uses
a regular expression.

Enabled = regular expression specified in File
name parameter will be used to fetch the
correct file to download.
Disabled = regular expression will not be used
when fetching the file name.

RayFlow data field
ID/name

string
optional

The name of ID of a data field that stores a name of
a file to download.

Example:
MsiTransform

Use field ID
instead of field
name

boolean
default: true

Indicates whether the RayFlow data field ID/
name parameter should use the field ID instead of
field name.

241User Guide RayQC 6.2

Plug-Ins

Enabled = use data field ID
Disabled = use data field name

GetPackage
Request a package ID from RayFlow and therefore requires an
active connection to the RayFlow database server.
Usable in combination with elements of type Data Field.

This function does not accept parameters.

SetField

Updates a value of the RayFlow data object referenced by the
current connection, and therefore requires an active
connection to the RayFlow database server.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

RayFlowField string The name of the RayFlow data field that has to be
updated.

Example:
Manufacturer

V alue string The value that will be written into the field
defined above.

Example:
Raynet GmbH

RayFlowPackageI
D

string The ID of the RayFlow package, usually delivered
with the GetPackage plug-in.

Example:
c32715f5-186d-49c7-b998-30f5d50v95fb

UploadFile

Uploads a file to RayFlow. This affects the RayFlow data object
referenced by the current connection, and therefore requires
an active connection to the RayFlow database server.
Usable in combination with elements of type Checkpoint.

242User Guide RayQC 6.2

Plug-Ins

Input parameters

Name Type Description & Examples

File formatted string The path to the file that has to be uploaded.

Example:
C:\Temp\Sample.pdf

RayFlowPackageI
D

string The ID of the RayFlow package, usually delivered
with the GetPackage plug-in.

Example:
c32715f5-186d-49c7-b998-30f5d50v95fb

Registry Plug-In
The Registry plug-in deals with functionality required to retrieve information about registry
hives, keys, and values.

Function Summary

EntryExists
GetType
GetValue
KeyExists
ListOfSubkeys

Function Details

EntryExists

Checks if a registry entry exists. If the entry is not found, the
returned result is No, otherwise Yes.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

64 Bit
Architecture

boolean
default: true

The architecture specific area definition of the
registry search.

243User Guide RayQC 6.2

Plug-Ins

Options:
enabled = the entry is searched within the
64bit related areas of the registry.
disabled = the entry is searched within the
32bit related areas of the registry.

Hive formatted string The registry hive in which RayQC searches for the
key and entry defined later.

Options:
HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_CURRENT_CONFIG

Key string The name of the key in which RayQC searches for
the entry defined later.

Example:
Software

Entry string The name of the entry RayQC searches for.
(Often referred to as "value", even though it seems
a bit confusing that a value may have a value itself,
which is why the registry plug-in searches for
entries, and not values.)

Example:
RayPack

GetType

Gets the type of a registry
key.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

64 Bit
Architecture

boolean
default: true

The architecture specific area definition of the
registry search.

Options:
enabled: the entry is searched within the 64bit
related areas of the registry.

244User Guide RayQC 6.2

Plug-Ins

disabled: the entry is searched within the 32bit
related areas of the registry.

Hive formatted string The registry hive in which RayQC searches for the
key and entry defined later.

Options:
HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_CURRENT_CONFIG

Key string The name of the key in which RayQC searches for
the entry defined later.

Example:
Software

Entry string The name of the entry RayQC searches for.
(Often referred to as "value", even though it seems
a bit confusing that a value may have a value itself,
which is why the registry plug-in searches for
entries, and not values.)

Example:
RayPack

GetValue

Gets a registry value.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

64 Bit
Architecture

boolean
default: true

The architecture specific area definition of the
registry search.

Options:
enabled: the entry is searched within the 64bit
related areas of the registry.
disabled: the entry is searched within the 32bit
related areas of the registry.

Hive formatted string The registry hive in which RayQC searches for the
key and entry defined later.

245User Guide RayQC 6.2

Plug-Ins

Options:
HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_CURRENT_CONFIG

Key string The name of the key in which RayQC searches for
the entry defined later.

Example:
Software

Entry string The name of the entry whose value has to be
returned. This is an optional parameter and if
empty then it requests the default value.
(Often referred to as "value", even though it seems
a bit confusing that a value may have a value itself,
which is why the registry plug-in searches for
entries, and not values.)

Example:
RayPack

KeyExists

Checks if a registry key exists. If the key is not found, the
returned result is No, otherwise Yes.
Usable in combination with elements of type Checkpoint.

Input parameters

Name Type Description & Examples

64 Bit
Architecture

boolean
default: true

The architecture specific area definition of the
registry search.

Options:
enabled: the entry is searched within the 64bit
related areas of the registry.
disabled: the entry is searched within the 32bit
related areas of the registry.

Hive formatted string The registry hive in which RayQC searches for the
key defined later.

Options:
HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

246User Guide RayQC 6.2

Plug-Ins

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_CURRENT_CONFIG

Key string The name of the key whose existence has to be
checked.

Example:
Software

ListOfSubkeys

Gets a list of subkeys for a
given registry key.
Usable in combination with elements of type Data Field and Multi-Option.

Input parameters

Name Type Description & Examples

64 Bit
Architecture

boolean
default: true

The architecture specific area definition of the
registry search.

Options:
enabled: the entry is searched within the 64bit
related areas of the registry.
disabled: the entry is searched within the 32bit
related areas of the registry.

Hive formatted string The registry hive in which RayQC searches for the
key and entry defined later.

Options:
HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_CURRENT_CONFIG

Key string The name of the key in which RayQC searches for
the entry defined later.

Example:
Software

Entry string The name of the entry RayQC searches for.
(Often referred to as "value", even though it seems
a bit confusing that a value may have a value itself,
which is why the registry plug-in searches for
entries, and not values.)

247User Guide RayQC 6.2

Plug-Ins

Example:
RayPack

Advanced Plug-In
Allows a user to select target package for collision test. A wizard called Select Collision Testing Targets is
launched when a checkpoint containing this plug-in is executed. This wizard lists the packages that are stored in
the RayQC Adva nced catalog.

Function Summary

GetCollisionTargets
GetRulesets
StartTestScenario

Function Details

GetCollisionTargets

Allows a user to select target package for collision test. A
wizard called Select Collision Testing Targets is launched,
when a checkpoint containing this plug-in is executed. This wizard catalogs the packages stored
in RayQC Adva nced database.
This plug-in is only usable with an element of type Data Field.

GetRulesets

Launches the Select Rulesets wizard in which a ruleset can be selected
to execute different test types including Collision, Virtualization, and
System Readiness.
This plug-in is only usable with an element of type Data Field.

StartTestScenario

Starts the test scenario based upon the input parameters.
After executing the test, this plug-in returns the test result
along with a path to the report file.
This plug-in is only usable with an element of type Checkpoint.

Input parameters

Name Type Description & Examples

248User Guide RayQC 6.2

Plug-Ins

MSI path string The name and path of the source package for
testing

Example:
C:\Users\Administrator\Desktop\RayTest.msi

Ruleset ID formatted string
optional: true

Identifier of the test ruleset to be executed upon
the source package. Use angle brackets for a
description (they are ignored by the parser, only
the number is interpreted).

Example:
1 <Collision>

MST path string
optional: true

The name and path of the MST file.

Example:
C:\Users\Administrator\Desktop\Raytest.mst

Collision target formatted string
optional: true

Path to the target package for collision test. Use
angle brackets for a description (they are ignored
by the parser, only the number is interpreted).
Example:
db:8 <Skype 10.0>

External Plug-Ins
RayQC is a tool for both: static and dynamic test procedure bundling, based on manually or
automatically executed test steps which are organized in easily maintainable checklists. Some
basic logic for system checks and manipulations come along with the RayQC application itself, as
so called internal plug-ins. Each of these plug-ins has a clear public interface of functions, along
with input and output parameters. With a decent amount of creativity, checklist authors can
actually define collections of test steps, which perform a broad variety of automated tests by
simply configuring and combining these internal plug-ins. A good share of common test logic
requirements can be covered without any additional customization.

However, Raynet knows how flexible evaluators have to react and adjust in order to be able to
meet ever changing demands on quality, performance and efficiency. Therefore, RayQC contains
an interface for the integration of custom plug-in logic that extends the services provided by
internal plug-ins as far as the creativity and PowerShell programming skills of checklist creators
may carry them.

The communication between external plug-ins and RayQC has to be standardized, since all
RayQC instances of a specific RayQC product version should be able to work with any external
plug-in. This is not only a core demand of enterprise wide teamwork, but also helps to maintain
compatibility and migration paths over several product versions with a manageable amount of
workload.

249User Guide RayQC 6.2

Plug-Ins

External plug-in logic has to be written in PowerShell, and introduced to the RayQC plug-in
interface by an XML based manifest file. Please refer to the upcoming sections for details on
these specific files and their requirements.

Be aware:
In order to be able to use external plug-ins with RayQC, it has to be ensured that the
PowerShell version supported by the device that hosts the application matches the
PowerShell version of the actual plug-in script. It is highly recommended to
synchronize the PowerShell version among all devices that are assigned for QA
execution to prevent compatibility issues in the first place. RayQC currently supports
PowerShell version 3.0 and higher.

Structure of a Plug-In
Each external plug-in consists of a logic part, which has to be written in Powershell, and a
declarative part, provided as XML manifest file. These file types always have to be considered as
a dynamic duo that should never fall apart. Therefore, it is usually required to update both files
when the plug-in function is changed, e. g. by adding a new function or modifying function
signatures.

There are some properties that have to be defined clean and clear for each plug-in, in order to
allow RayQC to recognize the plug-in resource bundle and integrate it into the checklist
workflows:

Plug-In Name

Each external plug-in must have a name that is unique within the current plug-in context. The
plug-in name is also the name of the directory which contains the plug-in script logic and
manifest files. RayQC searches for these resource structures to build the set of available plug-ins
for a specific checklist when it is opened for evaluation within the Checklist Viewer or for
structural manipulations within the Checklist Editor.

Plug-In Context

The plug-in context is the environment within reach of the RayQC application instance used to
build or evaluate plug-in augmented checklists. Usually it is limited to the local plug-ins sub-
directory for a checklist template, along with the global plug-ins sub-directory within the RayQC
application instance root folder (usually something like C:\Program Files (x86)\RayQC\).
Since RayQC is able to work with shared checklist resources from spread network locations, this
context scope is quite dynamical and can be changed with every checklist transfer operation.

Plug-In Version

Another important plug-in property is the version, which has to be incremented whenever the
plug-in sources are updated. It is documented within the manifest file, and used by RayQC to
determine if a copy of the parsed plug-in logic that resides within the session memory is still up
to date compared to the plug-in version stored on the physical file system.

Even though it is not demanded by technical restrictions, it is highly recommended to work with

250User Guide RayQC 6.2

Plug-Ins

versions with different level indicators regarding their update status. Simply increasing version
numbers as 1, 2, 3, 4 may surely do. However, providing additional information regarding the
grade of manipulation may help to keep plug-in resources easily maintainable. The suggested
plug-in version structure is [Major Upgrade].[Minor Update].[Small Revision].
Especially in extended QA teams it is very handy to provide this kind of meta information for
shared resources if they are not explicitly managed by software versioning and revision control
systems.

Plug-In Signature

This signature is built by the combination of plug-in name and version. Regarded as a clear
identifier for a specific plug-in state, the context wide Best Practice constraint for unique plug-in
signatures may save from severe maintenance troubles that might occur if plug-ins are not well
aligned.

Just imagine the confusion caused by different version states and identical copies of the same
plug-in stored in varying local and global \plug-ins\ directories: What happens to a checklist
that is copied from one repository branch to another? Will the local version of the plug-in
provided within the new context situation match the version that has been used in the former
context? Or does the user have to copy the plug-in resources along? What if a plug-in with the
same name but different version already exists in the new context?

251User Guide RayQC 6.2

Plug-Ins

Be aware:
It is highly recommended to define an enterprise wide guideline for the provision of well aligned
plug-in management. It should contain clear rules regarding versioning, naming, copying, and
adjusting plug-ins. All users with access to the set of checklists and plug-ins should be aware of these
guidelines and follow their terms and conditions.

The Manifest
From a checklist creator's point of view, a plug-in is determined by its name, available functions and their
parameters. Especially for internal plug-ins, this set of information is all a checklist author may access. (Well,
actually he has additional information available from this document, but who provides a decent user guide for
the set of custom plug-ins established within an enterprise QA department?)

The manifest file of a plug-in has to define this set of plug-in properties in a human as well as system readable
format. This is why Raynet decided to use XML as manifest file markup language, since it is highly structured and
maintains intuitive accessibility for checklist authors.

There are several angles from which manifest files may be explored: from the naked XML
structure with its tags and attributes, or from the logical and functional requirements regarding
information needed for the interface definition. The following section describes the informative
scope, whilst the Appendix section provides access from the other side.

Plug-In Interface Definition Requirements

Each manifest file represents a specific group of functions and arguments that are somehow
related to each other. From this point of view a plug-in is nothing more than a container for
standardized program logic.

Each plug-in needs a certain set of information to be clearly identifiable. These information
includes Name, Version, Filename, and PowerShell version which supports the related
PowerShell script. These first set of information is needed to be plainly visible from the manifest.

 <Name>PowerShellSample</Name>

 <Description>This a pretty straight external plug-in with two sample function for

demonstration.</Description>

 <Version>1.2.3.4</Version>

 <Filename>PowerShellSample.ps1</Filename>

 <PowerShellVersion>3</PowerShellVersion>

For this sample manifest file the plug-in name is PowerShellSample, it has 1.2.3.4 as its version.
Furthermore this manifest file links to the PowerShellSample.ps1 script which is supported by
PowerShell version 3.0 and higher.

Alright, the foundation is there - RayQC can recognize the plug-in. But how to communicate what
the plug-in is capable of? Well, what is usually required from scripted logic is a classical
sequence of using some pieces of information, processing them somehow, and giving feedback
about the result of the processing. So, each of these sequences is a capsuled and clearly defined

252User Guide RayQC 6.2

Plug-Ins

functional group. We interpret plug-ins as containers for functionality, so a plug-in with only one
function may exist, but to be true is a poor container. Let's be generous and assume that there
has to be at least one function, but authors are free to add as many as pleases them.

Combining these properties of plug-in functions and its parameters, the translation to XML is
quite obvious: Each function description is embraced by a parent tag, whilst these have to be
parts of the plug-in themselves.

<Name />

 <Description />

 <Version />

 <Filename />

 <PowerShellVersion />

 <Functions>

 <FunctionParameters>

 <FunctionName />

 <Description />

 <Parameters />

 </FunctionParameters>

 </Functions>

</plug-inData>

There seem to be some important facts missing in the sample XML given above. The functions
and their parameters are not named, so how could RayQC know which sub-tree to enter when a
checklist author selects a plug-in function from the Checklist Editor interface? And up to now
there is no reference to the actual source code with the function logic (the part that actually uses
the input to somehow generate output).

Well, each function and its parameter needs an identifier (a unique one per function, that is easy
to find when a user reads the manifest - it seems to be a good idea to set it as an attribute for the
function tag).

 <Name>PowerShellSample</Name>

 <Description>This a pretty straight external plug-in with two sample function for

demonstration.</Description>

 <Version>1.2.3.4</Version>

 <Filename>PowerShellSample.ps1</Filename>

 <PowerShellVersion>3</PowerShellVersion>

 <Functions>

 <FunctionParameters>

 <FunctionName>TestMeOne</FunctionName>

 <Description>PowerShell Function One</Description>

 <Parameters>

 <BooleanParameter>

 <Name>param1</Name>

 <Description>Expects a boolean input (true/false).</Description>

 <IsOptional>false</IsOptional>

 <Default>true</Default>

 </BooleanParameter>

 <StringParameter>

 <Name>param2</Name>

 <Description>Expects a string that matches the regular expression

'{0}'.</Description>

253User Guide RayQC 6.2

Plug-Ins

 <IsOptional>false</IsOptional>

 </StringParameter>

 </Parameters>

 </FunctionParameters>

 </Functions>

</plug-inData>

That looks a lot better, especially the name and description attribute we added for each function
and its parameters is quite handy to have.Additionally we have also defined the parameter type,
which in turn defined the type of input value that is expected by the script.

Additional XML Definitions

Well... we are almost done. There is a tiny task of defining the function logic which has not been
performed yet.

<?xml version="1.0" encoding="utf-8"?>

<plug-inData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Name>PowerShellSample</Name>

 <Description>This a pretty straight external plug-in with two sample function for

demonstration.</Description>

 <Version>1.2.3.4</Version>

 <Filename>PowerShellSample.ps1</Filename>

 <PowerShellVersion>3</PowerShellVersion>

 <Functions>

 <FunctionParameters>

 <FunctionName>TestMeOne</FunctionName>

 <Description>PowerShell Function One</Description>

 <Parameters>

 <BooleanParameter>

 <Name>param1</Name>

 <Description>Expects a boolean input (true/false).</Description>

 <IsOptional>false</IsOptional>

 <Default>true</Default>

 </BooleanParameter>

 <StringParameter>

 <Name>param2</Name>

 <Description>Expects a string that matches the regular expression

'{0}'.</Description>

 <IsOptional>false</IsOptional>

 </StringParameter>

 </Parameters>

 </FunctionParameters>

 </Functions>

</plug-inData>

More information regarding the utilization of these attributes will be provided later.
So let's save the work done up to now as Manifest.xml and then proceed to the next section: The
plug-in Logic Script.

254User Guide RayQC 6.2

Plug-Ins

Tip:
Preparing the manifest files is as easy as pie with a decent XML editor at one's side. The editor should
provide code highlighting and optional support for XML schema definition assistance. There are many
free XML editors available online, and most software development suites carry more or less
sophisticated XML support along. Feel free to pick an editor of choice.

Note:
Please refer to the Appendix of this document for details regarding formal restrictions for the plug-in
manifest file.

The Plug-In Logic Script
The logic performed when a plug-in function is triggered from a checklist needs to come in a
strictly tailored dress of standard definitions. Each script must carry definitions and
subroutines to establish a baseline of communication capabilities between the RayQC plug-in
interface and the Checklist Viewer logic resolver.

The Plug-In Execution Procedure in a Nutshell

RayQC supports 2 kinds of plug-ins: Internal and External. The external plug-in type can be further divided into
categories: local and global plug-ins. Although the scope of both local and external plug-ins is different,they do
share the same plug-in execution logic. Each plug-in consists of a plug-in script and a manifest.xml file. The
manifest file acts as an interface between the RayQC plug-in execution logic and the plug-in script. When a
checklist containing the plug-in is loaded, the checklist is validated against the checklistschema.xsd file and
the manifest file is validated against the manifestschema.xsd file. During execution, depending upon the
plug-in logic, input parameters are passed to the plug-in script through the function which is defined in the
manifest.xml file. If the function name and its arguments in the manifest file don’t match the ones in the script
file, an error is thrown. After plug-in execution, the script returns the result value which in turn is mapped to the
checklist element, called the plug-in, through the manifest file. For more information on the structure of
checklists and its manifest files, refer to the Appendices chapter of this guide.

Note:
The following section does not provide a full plug-in script sample, but describes the
sections that need to be present. Please refer to the External plug-ins sample available
from the application root directory (typically something like C:\Program Files (x86)
\RayQC\Samples\), and the Appendix of this document for further code details.

Local and Global Plug-Ins
As already outlined before, there are 2 different ways to manage the aspects of storage
organization for external plug-ins. Both locations have their specific pro's and con's, which
demands a moment of analysis before the location for a newly created plug-in is defined.

Local external plug-ins

Local external plug-ins are stored in the /plug-ins/ sub-directory within the checklist container file. A user can

255User Guide RayQC 6.2

Plug-Ins

directly manage these plug-ins via the plug-in manager in the checklist editor.
The screenshot below displays an example of a checklist container file with plug-ins sub-directory, which in turn
holds the local plug-in for the respective checklist.

The screenshot below displays the plug-in inside the plug-in manager of the Checklist Editor for
the checklist External plug-in Sample.rqct.

256User Guide RayQC 6.2

Plug-Ins

Global External Plug-Ins

RayQC supports two types of global external plug-ins:PowerShell and DLL.These plug-ins are stored in the
\plug-ins\ sub-directory within the RayQC application installation directory (usually something like C:
\Program Files (x86)\RayQC\). They can be used by any checklist run from the local RayQC instance. If
plug-in functionality has to be provided for a large percentage of checklists that have to be performed on a
regular basis by several evaluators, it is recommended to store them within the RayQC application installation
directory. All checklists that are created or evaluated by this specific RayQC installation may use the external
plug-ins stored within the global plug-ins directory.

Be aware:
If there are several versions of the same plug-in available within the local external plug-
in folder of a specific checklist, and the global external plug-in of a RayQC instance,
there will be conflicts regarding the collection of the plug-in selector options within
the Checklist Editor. Additional issues may occur when checklist projects are evaluated
based on ambiguous plug-in versions. Since the management of external plug-in
resources is part of the RayQC administrator responsibilities, it is highly recommended
to define a global guideline for plug-in storage strategies and rules.

The screenshot below shows a standard explorer window displaying the global plug-in directory of a RayQC
installation with a set of globally available custom plug-ins. Each plug-in resides within a sub-folder, which is
named according to the actual plug-in name:

257User Guide RayQC 6.2

Plug-Ins

258User Guide RayQC 6.2

Using Virtual Machines

Using Virtual Machines
A checklist, a single group or a single element can be remotely executed on a virtual machines
by using the V irtual machine... button located in the Swipe-Bar that is available

Using this button will open the Available virtual machine screen.

In this screen, the virtual machines that shall be used to execute the checklist can be selected.
Machines that have been configured but are currently not available are grayed out and marked
by a warning symbol. The selected machines are highlighted as shown in the screenshot above.
Click on the Use selected... button to use the selected machines or click on the Close button to
return to the checklist on the local machine.

259User Guide RayQC 6.2

Using Virtual Machines

RayQC will now connect to the selected virtual machine. While plugging in to the machine, the
action can be aborted by clicking on the Cancel link. After the connection has been successfully
established, the Overview screen for the virtual machine is shown.

This screen can be used to either change the virtual machine, continue with the checklist, or
disconnect. Furthermore, some information about the virtual machine, like path, user, and the
selected snapshot are shown in this screen.

Use the OK button to continue, the Disconnect button to return to the local machine, or the Use
another machine... button to select another virtual machine from the list of available virtual
machines.

260User Guide RayQC 6.2

Using Virtual Machines

After continuing to the checklist it can be used as if working on a local machine. Only the
highlighted V irtual machine... button shows, that the checklist is currently being used on a
virtual machine and not on the local machine.

Clicking on the V irtual machine... button will open the Overview screen once more, which can
be used to disconnect or change the virtual machine. When leaving the currently selected virtual
machine, a confirmation screen will be shown.

In the Confirm prompt, there are three options available:

POWER OFF: Can be used to power off the virtual machine and return to the checklist on the
local machine or select another virtual machine.
LEAV E RUNNING: Can be used to return to the checklist on the local machine or select
another virtual machine, but the current virtual machine will not be turned off but stay active.

261User Guide RayQC 6.2

Using Virtual Machines

CANCEL: Is used to abort the action and return to the currently used virtual machine.

262User Guide RayQC 6.2

Working with RayFlow

Working with RayFlow

Introduction
RayFlow is a workflow process management tool with the ability to support diverse workflow
processes. The possibility to be customized to fit the user’s needs and requirements makes it
one of the most efficient and user friendly workflow management tools. This guide shows how to
configure and manage RayFlow, so that IT departments can stay ahead, save time, increase
productivity, and decrease IT costs.

RayFlow is based on the client-server architecture in which all the information, data, and
configuration is stored on the RayFlow server. Users work on this server remotely through the
RayFlow web and Windows-based clients.

Where to find the latest information about RayFlow

For further information on RayFlow, including its features, functionality and latest updates visit
www.raynet.de.

Enabling RayFlow features in RayQC and RayQC Advanced

RayFlow connection are stored in profile configuration. The minimal configuration requires
entering the URL address containing a valid and running instance of RayFlow server.
See RayFlow configuration for RayQC.

Signing-in to RayFlow
Saving and opening files from RayFlow requires that the current user is signed-in to the RayFlow
instance specified in the configuration screen for RayQC and RayQC Advanced.

Sign-in procedure makes sure that:

User has permissions to a specified RayFlow project
User has permissions to see/edit required RayFlow tasks

In order to sign-in, press the RayFlow button, located in the top right corner of the screen.

http://www.raynet.de

263User Guide RayQC 6.2

Working with RayFlow

If the server is not valid or not specified, the following warning will be shown:

Otherwise, the sign-in overlay will be displayed over the current window:

The overlay contains the following information:

The URL address of the current RayFlow instance, as configured in the profile settings
The text fields for user name and user password
A checkbox to remember the credentials on the current machine

Note:
RayFlow credentials have to be delivered by the local RayFlow administrator.

Login and password are required to sign-in to RayFlow.

264User Guide RayQC 6.2

Working with RayFlow

Once the credentials are verified, a selection of projects available in the current RayFlow
instance will be shown.

265User Guide RayQC 6.2

Working with RayFlow

Note:
Only projects to which the current user has view permissions are displayed.

Once the project is selected the sign-in procedure is complete, and certain RayQC functions (like
opening and saving files to RayFlow are available).

Once authenticated, the RayFlow button in the top right corner of the screen changes its color
and displays the user name of currently authenticated user. After clicking on it additional details
are shown, including:

Current project
An URL address of the current instance
A button to logout

266User Guide RayQC 6.2

Working with RayFlow

Signing out from RayFlow
In order to sign-out from RayFlow, or sign-in as another user, press the RayFlow button in the
right top corner:

And then click the Logout button to sign-out from RayFlow.

267User Guide RayQC 6.2

Troubleshooting

Troubleshooting
The following section gives a list of typical issues users may have to face whilst working with
RayQC. Since some of them may easily be solved, it is highly recommended to review this
section before the product support is contacted. Please refer to the RaySuite Knowledge Base as
well, since it contains information about current Known Issues and additional hints on handy
solutions and procedures regarding working with RayQC.

License Activation Tool is Shown at RayQC Launch
The License Activation Tool is invoked whenever RayQC is launched without a valid license in
place. Therefore, if users cannot run RayQC but always get the License Activation Tool instead,
there must be an issue with the current licensing status of the RayQC application. In order to
check the license status, please follow the steps outlined below.

Make sure to have your original RayQC order number at hand. It has been delivered along with
the RayQC resources handed over to you for productive usage or validation purposes. Since the
license checkup may include steps that require product activation, it is required to have the
order number. Additionally, a machine with internet connection (for online activation or support
driven activation via mail) has to be within reach as well if the machine RayQC is running on does
not have access to the internet itself.

1. Open the RayQC application installation directory (e. g. C:\Program Files (x86)\RayQC\) and
check the existance of a *.license file.
a. If a .license file is in place, move it from this directory to another one (or simply rename its

file extension from "license" to "license_") and try to launch RayQC again.

Note:
Moving or renaming the old .license file allows you to restore it later, or to send it to
the support team in case of more complex issues. Please do not delete the old .license
file before the RayQC application runs as expected.

2. Once the file is no longer in place, or if there has not been a .license file at all, the expected
result is the launch of the License Activation Tool.

3. Click on the "I have my order number" button and enter your data as demanded. For details on
how to accomplish that, please refer to the Get Sta rted Guide that has been provided along
with your RayQC installer resources.

4. Activate the product either by using the online activation via web-service, or by sending the
required information to our Support Panel. If your activation data is complete and valid, the
result depends on the activation method used: Either the web-service initiates the automated
creation of a new .license file within the application installation directory, or the support team
will reply and send a .license file you have to copy to the application installation directory
manually.

https://raynet.de/Support
https://raynetgmbh.zendesk.com

268User Guide RayQC 6.2

Troubleshooting

5. Either way, if the activation routine was executed successfully, you should have a new
.license file within the application installation directory, and RayQC should launch as
expected when the product's executable file is run.

If the issue is not solved by the steps named above, it is recommended to contact the Raynet
support team via our Support Panel.

Missing Item Numbers in a Checklist Group
Usually there is a straight forward numbering given for the checklist items bundled within each
checklist group container. Each newly added item increments the index value of the indentation
level it has been added to.

However, there may be circumstances that lead to checklists that seem to have broken
numberings when they are viewed or evaluated via the Checklist V iewer interface. If evaluators
complain about this fact, checklist authors do not have to consider this a bug, but simply open
the project with the Checklist Editor interface. If the missing index values belong to items that
have an active condition option, their index value is missing in the Checklist V iewer by design.

Imagine the influence conditional items had on checklist item numbers if the index values were
changed whenever the availability of an item is changed: The ID of all later items within the
same group would change as well. This behavior would make it quite hard to refer to checklist
items by their group and index value, which is why RayQC simply numbers all items
independent from their current state of availability.

Missing Plug-Ins
Plug-ins are an essential part of the dynamic checklist features in RayQC. They may either be
missing during the checklist creation / edition within the Checklist Editor, or be out of reach for

https://raynetgmbh.zendesk.com

269User Guide RayQC 6.2

Troubleshooting

execution during the evaluation via the Checklist Viewer.

Missing Plug-Ins During Checklist Preparation

Search for the plug-in resources at one of the type specific storage locations

When checklist editors enable the plug-in option for an element, there are three possible
sources for the offered list of plug-ins. If a plug-in is expected to be available within the plug-in
selector control for a specific checklist element, but is not, the following steps lead to
enlightening information that should help to solve the issue.

Internal plug-ins

o Available for all checklists made with RayQC as they are delivered along with the RayQC
resources and installed as mandatory feature by default.

o Open the RayQC program directory (usually C:\Program Files (x86)\RayQC\). Check if a
\Libs\ directory is present and contains a file called RayQC.plug-ins.dll.

o Please check whether the file and folder names are correct towards case sensitive lookups.

Global external plug-ins

o Available for all checklists evaluated with the local instance of RayQC, which include the
plug-in prepared by any RayQC user.

o Start RayQC and then go to the Settings ->plug-ins tab. Check if the desired plug-in is listed
in the plug-in manager.

o Open the RayQC program directory (usually C:\Program Files (x86)\RayQC\). Check if a
\plug-ins\ directory is present and a (matching) set of plug-in logic ([plug-inName].ps1)
and interface definition (Manifest.xml) is present in a sub-directory.

Local external plug-ins

o It is stored within the checklist file /checklist project file
o Open the checklist file / project in the Checklist Editor. Click on the plug-ins tab and make

sure that the plug-in is shown in the manager
o As RayQC checklist file is basically a ZIP container that contains the actual checklist.xml file,

supporting files and a plug-in folder which contains the local plug-in. Extract the checklist
file and go to the plug-ins folder. Verify the functions and their arguments matches in the
script and its manifest.xml file.

If any of the conditions named above is not given, the plug-in resources are missing and have to
be copied to or created at the specified location.

Check the access rights on plug-in resource files

If the plug-in is available at one of the locations listed above, check whether the user that

270User Guide RayQC 6.2

Troubleshooting

currently runs RayQC has access to the resource files. To do so, use the file / folder permission
management of Windows.
Since a plug-in needs to be executed, the minimal required access level is execute.

If this condition is not meet, adjust the permissions as required and retry to use the plug-in
within RayQC.

If all of the conditions named above are reviewed and regarded to be fulfilled, please contact
your RaySuite / RayQC system administrator, or contact the Raynet support team via our Support
Panel for further advice.

Check the compatibility and correctness of external plug-in resource files

Please verify the following dependencies:

Each external (i.e. not built-in) plug-in needs to consist of a .ps1 script and .xml manifest file.
These two files must be stored in the same directory and manifest file should always be called
manifest.xml file.
The function names in the manifest file must match the respective function names in the
PowerShell script. Same is true for the function arguments.
manifest.xml file must always adhere to the structural criteria laid down by the manifest.xsd
file

Missing Plug-Ins during checklist evaluation

Actually, all scenarios given above may very well cause a plug-in to be unavailable for execution
during the evaluation phase. However, there are some more which are likely and therefore worth
to take a look at:

Checklists launched for evaluation via RayFlow

If the checklist execution has been triggered by a RayFlow tool integration command, make sure
it contains all required parameters in a suiting condition.
Due to the flexible configuration and parameter injection concept of the RaySuite products,
there may be issues with the provided RayQC call regarding:

the tool integration in RayFlow itself
the RayFlow workflow data object property values (e. g. unescaped special characters in
parameter values, wrong path values, etc.)
unavailable resources, such as network shares, which may be referenced within the plug-in
definition files, the RayFlow tool integration, and the like

Checklists that have been moved from one device (physical or virtual) to

https://raynetgmbh.zendesk.com
https://raynetgmbh.zendesk.com

271User Guide RayQC 6.2

Troubleshooting

another

If a checklist template is moved from one location to another, it is mandatory to copy all local
external and global external plug-in resources along to be available on the new checklist
environment. (The same requirement for resource copies is given when a checklist contains
relative path definitions to help files, images, and the like) As an alternative, the checklist
resources may as well be stored on a shared location. Please make sure either the local or
network path is correct and the required resources are there, accessible, and have not been
damaged during the file transfer.

Logging RayQC Activity Fails
RayQC usually logs system activity in a file called RayQC.log, which is stored within the local
program data directory (e. g., C:\ProgramData\). The log file location can directly be accessed via
the Open logs folder option, which is available under the Troubleshooting tab of About page.

There may be reasons that prevent the log from being written. Please follow the steps described
below in order to eliminate the most likely reasons for logging issues:

The Target Log File Location is Not Accessible for the Current User

To check whether the currently logged in windows user profile has sufficient access to the log
file location:

1. Navigate to the RayQC application root directory, and open the log4net config file from the
\Config\ subfolder (e. g., C:\Program Files (x86)\RayQC\Config\log4netconfig.xml)

o If it does not exist, create it, and add a copy of the default log4net configuration file to it (see
Advanced Configuration Options).

2. Search for the file tag and read file name given as value attribute.

o If it is a file name, such as the default value RayQC.log, this file is created directly within the
application root directory.

o If it is a relative path definition, the file is created relative to the application root directory.
o If it is an absolute path, the file is created exactly at the specified location.
o If it is empty - note the path to a location that is accessible for the currently logged in

windows user profile and save the changed config file state

3. Browse to the specified location:

o If the directories named within the path do not exist physically: create them.

o If the directories named within the path actually do exist, check their security settings (right-
click > properties > security > [current user] and make sure that the currently logged in user
has writing access to the log file folder. (Ask your RaySuite system administrator for support if
security settings are restricted as well.)

272User Guide RayQC 6.2

Troubleshooting

4. Close and re-open RayQC. Load any checklist template or project.

5. A log file should have been created within the target log file location by now.

The Target Log File Location Directory Does Not Exist

1. Please follow the instructions given above to make sure local and static locations are given
correctly within the config file. Other possible locations for the log file creation may reside as
a shared network location.

2. Try to copy the path into a windows explorer address bar to open the specified target address.

o If the location is not available, there may be issues such as type errors, changed network
shares or temporary network provision issues. Please adjust the path to a local destination as
long as the network share is not available.

o If the location is available, make sure that there are sufficient writing access permissions for
the required windows user profile given.

o If the location is accessible, make sure that there is enough free disk space for log file
maintenance.

3. Try to create an arbitrary file at the specified target location (e. g., MyTextFile.txt).

o If an error message is displayed, fix the mentioned issues and re-try.

4. Close and re-open RayQC. Load any checklist template or project.

5. A log file should have been created within the target log file location by now.

The Log File is There, But Nothing is Written Into It

1. Navigate to the RayQC application root directory, and open the log4net config file from the
\Config\ subfolder (e. g., C:\Program Files (x86)\RayQC\Config\log4netconfig.xml)

2. Search for the maximumFileSize tag and check the given value. It has to be a full number
followed by either "KB", "MB" or "GB" (without blank space in between).

3. Set the value to "2048KB"

4. Additionally, search for the level tag and check the given value. If it is set to OFF, logging is
actually deactivated. Set the value to DEBUG.

5. Close and reopen RayQC. Load any checklist template or project.

6. The log file should have been extended with new messages by now.

273User Guide RayQC 6.2

Troubleshooting

The Log File is Overloaded with Information

1. Navigate to the RayQC application root directory, and open the log4net config file from the
\Config\ subfolder (e. g., C:\Program Files (x86)\RayQC\Config\log4netconfig.xml)

2. Search for the level tag and check the given value. Set it to ERROR to reduce the number of
lines that are written to the log file.

3. Additionally, review the layout type definition(s). Edit the pattern to reduce the information
written for each line of the log file. Please refer to the log4net online documentation for
further details on how to accomplish this task.

4. Delete the existing log file, close and re-open RayQC. Load any checklist template or project.

5. The log file content should have been adjusted to match the newly defined settings by now.

Changes to the Log Configuration File Cannot Be Saved.

On systems where UAC is activated, there may be issues with writing to files which reside within
the Windows Program Files directory. A simple workaround for these issues is to copy the file to
a location where writing is allowed, execute and save the changes there, and finally copy the
manipulated file back to the original location.
In most cases this should suffice. If this solution does not work, contacting the system
administrator is due.

If all of the typical issues named above are reviewed and eliminated as possible issue reasons,
please contact your RaySuite / RayQC system administrator, or contact the Raynet support team
via our Support Panel for further advice.

Connections to Virtual Machines

Troubleshooting Problems with Hyper-V Connectivity

The following checklist helps to find and fix any possible issues when working with Hyper-V
machines:

1. Is PowerShell 3.0 installed (both on Guest and Host Machine)?
a. Check $PSVersionTable.PSVersion in PowerShell

2. Is the machine properly configured in the Settings > V irtual Machines screen (pay attention
to hardcoded IP addresses which may be dynamically assigned by DHCP)

3. Is RayPack Studio Tools for Hyper-V installed on the Guest machine? Is the process vm-
proxy.exe from RayPack Studio Tools for Hyper-V running?

4. Is WINRM configured?
a. Check winrm qc

http://logging.apache.org/log4net/release/sdk/log4net.Layout.html
https://raynetgmbh.zendesk.com

274User Guide RayQC 6.2

Troubleshooting

5. Does WINRM have proper TrustedHosts entries on both VM and server?
a. winrm s winrm/config/client '@{TrustedHosts="RemoteComputer"}'
b. winrm g winrm/config/client - shows the current TrustedHosts lists
c. More information: https://technet.microsoft.com/en-us/library/ff700227.aspx

6. Does WINRM have a connection to the VM and vice-versa?
a.- Test-WSMan -ComputerName IP

7. Are all necessary ports unblocked on the physical machine?
a. The default port range is 48654-48999.

Changing TCP / IP Configuration

In some cases it may be required to use custom port ranges, timeouts, etc. for PackBot related
functionality.

The following table summarizes the available options:

Setting name Default
value

Description

TcpIpDefaultPort 48654-48999 Port range used for TCP/IP communication. Use minus
(-) and comma (,) to indicate which ports are valid for
incoming communication. Make sure that these ports
are not blocked by your firewall. PackBot tries to find
first valid free port and listen on it from lower to higher
numbers.

TcpIpMaxRetry 3 Maximum number of retries before asserting the
machine is not available..

TcpIpDefaultReceiveTimeout240000 Reverts to default value if Windows does not define its
own timeouts.

TcpIpDefaultSendTimeout 240000 Reverts to default value if Windows does not define its
own timeouts.

https://technet.microsoft.com/en-us/library/ff700227.aspx

275User Guide RayQC 6.2

Additional information

Additional information
Visit www.RayQC.de for further information regarding the product and current community
incentives. It’s also recommended taking a look at additional resources available at the
Knowledge Base for Raynet products: https://Raynet.de/Support/.

Raynet is looking forward to receiving your feedback from your RayQC experience. Please
contact your Raynet service partner or use our Support Panel to add your ideas or requirements
to the RayQC development roadmap!

Help & Support

Request RayQC support

Our Raynet support team gladly assists you on any questions or issues you encounter regarding
RayQC. Feel free to sign in and open incidents via our Raynet support panel.

Join the RaySuite community
The RaySuite community resides within our Knowledge Base: https://raynet.de/Support/. Once
you have signed up for access to the Raynet support panel, you automatically have access to the
Knowledge Base, too.
You will surely come to a point where you would love to suggest a new feature for the future
development of RayQC. Maybe you need to find some tips & tricks to hit your target right. The
RaySuite community is your place for discussing such topics, for sharing and expanding your own
experience.

Step in contact with Raynet's testers, evaluators, and consultants in order to learn how to polish
your quality assurance activities to a level of highest quality standards. Since Raynet has years and
years of experience, we know what to do, and how to do it. Don't row your boat alone when you
have the chance to join our RaySuite community for free.

Contact your Raynet sales representative

Our sales team is the right contact for any license or edition question you might encounter. You
would like to benefit from a professional RayQC training? Ask for dates and locations to find the
fitting training occasion. You are highly welcome to step in contact via sales@raynet.de.

http://www.rayqc.de
https://raynet.de/Support/
https://raynetgmbh.zendesk.com
https://raynetgmbh.zendesk.com
https://raynet.de/Support/
mailto:sales@raynet.de

276User Guide RayQC 6.2

Appendices

Appendices
The following sections are designed to give detailed information about the general checklist and
external plug-in structure required by RayQC. Please refer to the sample directories within your
RayQC application installation directory (e. g., C:\Program Files (x86)\RayQC\) for further
sample source code and checklist files.

Basic Checklist Structure
Every checklist a user wants to open and process with RayQC has to be valid against the RayQC
XML Checklist Schema Definition. The definition file ChecklistSchema.xsd is available from the
root of the application installation directory (e. g., C:\Program Files (x86)\RayQC\). Open this
file in a suiting editor of your choice to take a look at the requirements for a minimal RayQC
checklist:

XML version must be 1.0 or higher
Encoding must be utf-8
Root node must be <checklist>
<checklist> child <checklistHeader> must be present exactly once
<checklistHeader> child <title> must be present exactly once but may be empty
<checklistHeader> child <description> may be present exactly once but may be empty
<checklistHeader> child <reportFilename> may be present exactly once but may be empty
<checklistHeader> child <bypassMessage> may be present exactly once but may be empty
<checklist> child <checklistContent> must be present exactly once
<checklistContent> child <group> must be present at least once
<group> attribute [id] must be present exactly once per <group> and unique throughout the
checklist structure
<group> child <groupHeader> must be present exactly once
<groupHeader> child <title> must be present exactly once but may be empty
<groupHeader> child <description> must be present exactly once but may be empty
<group> child <groupContent> must be present exactly once
At least one <groupContent> Can have unbounded number of following child elements with
unique global id
o <checkpoint> with attribute {id]present and unique throughout the checklist structure
o <information> with attribute [id] present and unique throughout the checklist structure
o <dataField> with attribute [id] present and unique throughout the checklist structure
o <multiOption> with attribute [id] present and unique throughout the checklist structure

According to this description, the following checklist source code is valid:

<?xml version="1.0" encoding="utf-8"?>

<checklist lastChange="2015-04-14T11:05:21.6638863+02:00" allowBypass="false">

277User Guide RayQC 6.2

Appendices

 <checklistHeader>

 <title />

 <description />

 <reportFilename>RayQC Report - #title#</reportFilename>

 <bypassMessage>Bypassing will invert the result. A bypass reason should be

provided.</bypassMessage>

 </checklistHeader>

 <checklistContent>

 <group id="Group_381632152800">

 <groupHeader>

 <title />

 <description />

 </groupHeader>

 <groupContent>

 <information id="Information_381632152800">Description</information>

 </groupContent>

 </group>

 </checklistContent>

</checklist>

However, a checklist file without any content may be valid, but is definitively useless at the same
time. In order to understand the required and optional elements and nestings of RayQC
checklists, it is highly recommended to review the sample checklist files that are available with
the RayQC application installation directory (e. g., C:\Program Files (x86)\RayQC\Samples\).

Checklist Example
The following XML structure is created as default for new checklists and is applied when users hit
the Create new checklist button from the Dashboard:

<?xml version="1.0" encoding="utf-8"?>

<checklist lastChange="2015-04-14T11:13:39.6809931+02:00" allowBypass="false">

 <checklistHeader>

 <title>Checklist Title</title>

 <description />

 <reportFilename>RayQC Report - #title#</reportFilename>

 <bypassMessage>Bypassing will invert the result. A bypass reason should be

provided.</bypassMessage>

 </checklistHeader>

 <checklistContent>

 <group id="Group_663731202081">

 <groupHeader>

 <title>Group Title</title>

 <description />

 </groupHeader>

 <groupContent>

 <information id="Information_663731202081">Description</information>

 </groupContent>

 </group>

 </checklistContent>

</checklist>

Please take a look the checklist sample directory from within your application installation
directory (e. g., C:\Program Files (x86)\RayQC\Samples\). This directory contains a set of

278User Guide RayQC 6.2

Appendices

checklists, ready to review and use as samples to start from.

Tip:
Another approach to deeper understanding for the XML structures is to simply create a
checklist template in RayQC and open the checklist.xml file from within the template
container *.rqct with an external XML editor such as Foxe. Observing the effect of
minimal changes in the Checklist Editor interface is as well possible by comparing two
checklist source versions, e. g. by using a tool like WinMerge.

Basic External Plug-In Structure
As already described within the plug-ins section of this document, an external plug-in consists of
two basic elements: the script file and the descriptive manifest file.

The script file

Source code that is about to be used as plug-in script for RayQC must validate against a set of
minimal requirements in order to be integrated correctly:

External plug-ins have to be valid PowerShell .ps1 files. (To launch other files, like executables,
the internal command plug-in can be used.)

Parameter definitions within script and manifest file must match

The manifest file

Every plug-in script users want to use in combination with RayQC checklists has to come along
with a manifest XML file that is valid against the RayQC plug-in Schema Definition. The definition
file ManifestSchema.xsd is available from the root of the application installation directory (e. g.,
C:\Program Files (x86)\RayQC\). Open this file in a suiting editor of your choice to take a look at
the requirements for a minimal RayQC plug-in manifest file:

XML version must be 1.0 or higher
Encoding must be utf-8
Root node must be <pluginData>
<pluginData> must have non-empty attribute name
<pluginData> attribute description must be present exactly once but may be empty
<pluginData> must have non-empty attribute version
<pluginData> must have non-empty attribute FileName
<pluginData> may have one non-empty attribute Encrypted

279User Guide RayQC 6.2

Appendices

<pluginData> must have non-empty attribute PowerShellVersion
<pluginData> child <Function> must be present exactly once
<Function> must contain one or more child <FunctionParameters>
<FunctionParameters> must have non-empty attribute FunctionName
<FunctionParameters> attribute <description> must be present exactly once but may be
empty
<FunctionParameters> child <Parameters> must be present exactly once
At least one <Parameters> child out of the following options must be present
o <BooleanParameter> : Expects a boolean input (true/false)

<Name> : Name of the parameter
<Description> : User defined description of the parameter
<IsOptional> : When set to true, providing input for this parameter is optional
<Default> : Default parameter value

o <StringParameter> : Expects a string as input parameter
<Name> : Name of the parameter
<Description> :User defined description of the parameter
<IsOptional> : When set to to true, providing input for this parameter is optional
<Default> : Default parameter value
<RegexString>: Regular expression
<ValidationMessage> : Validation message that is shown if the string does not satisfy the
regular expression

o <NumberParameter> : Expects an integer value between Min and Max
<Name> : Name of the parameter
<Description> : User defined description of the parameter
<IsOptional> : When set to true, providing input for this parameter is optional
<Default> : Default integer parameter value
<Min> : Minimum input integer value
<Max> : Maximum input integer value
<Increment> : Increment value

o <MultiStringParameter> : Provides user option to select from drop-down a string that is
provided as parameter
<Name> : Name of the parameter
<Description> : User defined description of the parameter
<IsOptional> : When set to true, providing input for this parameter is optional
<Default> : Default string from the string list
<StringList> : List of strings defined. e.g. <string1/> <string2/> <string3/>

According to this description, the following manifest file source code is valid:

<?xml version="1.0" encoding="utf-8"?>

<pluginData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Name />

 <Description />

 <Version />

 <Filename />

280User Guide RayQC 6.2

Appendices

 <PowerShellVersion />

 <Functions>

 <FunctionParameters>

 <FunctionName />

 <Description />

 <Parameters />

 </FunctionParameters>

 </Functions>

</plug-inData>

However, a manifest file without any productive content may be valid, but is definitively useless
at the same time. In order to understand the required and optional elements and nestings of
RayQC plug-in manifest files, it is highly recommended to review the sample plug-ins and their
manifest files, which are available with the RayQC application installation directory (e. g., C:
\Program Files (x86)\RayQC\Samples\).

External Plug-In Example
The following script is derived from the PowerShellSample.ps1, which is part of the
ExamplepluginSample.rqct checklist file. This file is located in the RayQC application installation
directory (e.g. C:\Program Files ()x86)\RayQC\Samples)

function TestMeOne($param1, $param2)

{

 "Hello from TestMe ONE with $param1, $param2"

}

function TestMeTwo($param3, $param4)

{

 "Hello from TestMe TWO with $param3, $param4"

}

function TestMeThree($param5)

{

 "Hello from TestMe THREE with $param5"

}

281User Guide RayQC 6.2

Appendices

	Contents
	Introduction
	RayQC Features at a Glance
	RayQC is a part of RaySuite
	Development Roadmap
	Additional Resources

	System Requirements
	Hardware Requirements
	Supported OS
	Prerequisite Software
	Migration

	Installing RayQC
	Product Activation
	License wizard
	Order number
	License file
	Floating license server
	I do not have a license or order number
	I want to take my activation back

	Working with RayQC
	Objects
	Typical Workflows
	The Home Screen
	The Checklist Viewer
	The Checklist Editor
	Shortcuts
	Communication with RayFlow
	From RayFlow to RayQC
	From RayFlow to RayQC and back

	The RayQC Command Line Interface
	The FILE menu

	Settings
	Interface
	Behavior
	Signing
	Plug-Ins
	Report profiles
	RayFlow
	Virtual Machines
	Snapshot Selector
	Preparing Virtual Machines

	Advanced Configuration Options

	About
	Get Started
	License and Edition
	Troubleshooting

	Checklist Structures
	Basic Checklist Properties
	Steps and Actions
	Groups
	Elements
	Element Types
	Element Type Information
	Element Type Data Field
	Element Type Checkpoint
	Element Type Multi-Option

	Element Options
	Help
	Conditions
	Exceptions
	Expected Value
	Prevent Evaluation / No restraint
	Use Plug-Ins
	RayFlow Parameter

	Element Controls
	Add Element
	Delete Element
	Move Element Up / Down
	Indent Element
	Add Group
	Delete Group
	Element Context Menus

	Properties
	Supporting Files
	Plug-Ins
	Post Processing

	Checklists on the File System
	Formatting Markup Options

	Standard Checklist Procedures
	Create Checklist Templates
	Evaluate Checklist Projects
	Create Checklist Evaluation Reports
	Edit Checklist Templates
	Delete Checklists

	Plug-Ins
	Plug-In Types
	Using Plug-Ins in Checklists
	Configuration during Checklist Creation
	Execution during Checklist Evaluation

	Internal Plug-Ins
	Command Plug-In
	File Plug-In
	Folder Plug-In
	IniFile Plug-In
	Local System Plug-In
	Logic Plug-In
	Regular Expressions

	MSI Plug-In
	RayFlow Plug-In
	Registry Plug-In
	Advanced Plug-In

	External Plug-Ins
	Structure of a Plug-In
	The Manifest
	The Plug-In Logic Script

	Local and Global Plug-Ins

	Using Virtual Machines
	Working with RayFlow
	Introduction
	Signing-in to RayFlow
	Signing out from RayFlow

	Troubleshooting
	License Activation Tool is Shown at RayQC Launch
	Missing Item Numbers in a Checklist Group
	Missing Plug-Ins
	Logging RayQC Activity Fails
	Connections to Virtual Machines

	Additional information
	Help & Support

	Appendices
	Basic Checklist Structure
	Checklist Example
	Basic External Plug-In Structure
	External Plug-In Example

